

DrägerSensor® & Portable Instruments Handbook 6th Edition

DrägerSensor® & Portable Instruments Handbook

6th Edition

Dräger Safety AG & Co. KGaA Lübeck, Germany 2022

13

This handbook is intended to be a reference for the users of portable gas detection.

However, each individual case of application must be considered more closely. The information has been compiled to the best of our knowledge. However, the Dräger organization

is not responsible for any consequence or accident which may occur as the result of misuse

or misinterpretation of the information contained in this handbook.

The instructions for use may not always correspond to the data given in this book. For a full

understanding of the performance characteristics of the measurement devices and for the use of Dräger products, only the instructions of use enclosed with the product shall apply

and any inconsistencies between this handbook and the instructions for use shall be resolved in favour of the instructions for use. The user should carefully read and fully understand the

instructions for use prior to the use of the measurement devices.

The use of descriptive names, trade names, trademarks, etc., even if not explicitly marked,

does not justify the assumption that such names are exempt from trademark and brand

protection and therefore may be used freely by anyone.

Technical data is subject to modifications.

Publisher: Dräger Safety AG & Co. KGaA

DrägerSensor® & Portable Instruments Handbook

Lübeck, Germany

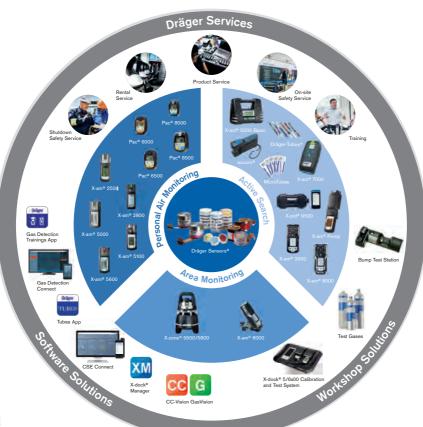
2022

© 2022 Dräger Safety AG & Co. KGaA

Revalstrasse 1 · 23560 Lübeck · Germany

All rights reserved, in particular the right of reproduction,

dissemination, and translation.


Printed in Germany

Press date: 2022

CONTENTS

1	Introduction	7
2	Properties of dangerous gases and vapors	8
2.1	Gases – what is a gaseous matter?	8
2.2	Vapors – aren't they gases, too?	9
2.3	Our atmosphere	10
2.4	Ex, Ox, Tox – gas hazards!	12
2.5	Toxic gases and vapors	14
2.6	Flammable gases and vapors	16
2.7	LEL and preventative explosion protection	18
2.8	Flash point of flammable liquids	19
2.9	Concentration and their calculation	20
3	Introduction to portable instruments	21
3.1	Application areas for portable gas detection	21
3.2	Requirements for gas detection instruments	23
3.3	Explosion protection	25
3.4	ATEX 137 - directive 1999/92/EC	26
3.5	ATEX 95 – directive 94/9/EC	28
3.6	Laws and regulations in USA, Canada, and Mexico	32
3.7	Measurement Performance Certificate according to IEC	38
3.8	Single-gas measuring instruments	42
3.9	Multi-gas measuring instruments	50
3.10	Multi-gas scanner	73
4	Software Solutions	78
4.1	Dräger Gas Detection Connect (GDC)	79
4.2	Dräger CSE Connect	80
4.3	Dräger X-dock Manager (XDM)	81
4.4	Dräger CC-Vision Basic	82
4.5	Dräger GasVision	82
4.6	New Datalogger concept	83

5	Introduction to sensor technology	88
5.1	Selecting the proper measurement method	89
5.2	Overview of detectable vapors and gases	94
5.3	Dräger CatEx sensors	114
5.4	Dräger infrared sensors	138
5.5	Dräger PID sensors	162
5.6	Electrochemical sensors	178
	General Instructions for DrägerSensors® XS, XS R, XS 2 and XXS	181
	DrägerSensor® XS	183
	DrägerSensor® XXS	243
5.7	Explanation to the sensor data	314
6	Accessories	318
6.1	Introduction	319
6.2	Adjustment or calibration?	320
6.3	The bump test	322
6.4	Devices for calibration and functional testing	323
6.5	Manual bump test	324
6.6	The Dräger Bump Test Station	324
6.7	Dräger X-dock – more than just a test station	325
6.8	Test gas and accessories	326
6.9	Pressure reducer	327
6.10	Pumps	329
6.11	Probes	329
6.12	Hoses	334
6.13	Usage of Hoses	334

1 Introduction

Dear Readers.

In times when the world around us is becoming more volatile, uncertain, complex, and ambiguous (VUCA), it is important to have a constant partner with high quality at one's side for upcoming measurement tasks, especially when it comes to Technology for Life. At Dräger, we are not only constantly working to improve our gas measurement systems and services, but also optimize our working methods and documents.

We are pleased to present you a revision of the DrägerSensor and Portable Instruments Handbook, now its sixth edition.

With Dräger Gas Detection Connect, our system solution for the Industrial Internet of Things is presented in this edition. Consisting of sensor, gas warning device, test station, gateway and cloud, an overall system is created for efficient fleet management and remotely live monitoring of the sensor values.

Also worth mentioning is our new 4-gas measuring device Dräger X-am 2800 with integrated Bluetooth interface. New added value is created by data analysis and alarm reporting within the Gas Detection Connect Cloud.

We are also pleased to introduce a new $\rm O_2$ sensor and an improved catalytic Ex sensor, the CatEx SR in the X-am 2800. Both new sensors score with increased mechanical and chemical robustness.

To continue to keep track of the legal background in today's VUCA world, we have also updated the background to the measurement performance certificate (Type Examination Certification) according to IEC.

Many attentive readers have given us feedback on several corrections, which we have considered in this issue. Many thanks for the constructive criticism and the many, positive feedbacks on this compendium.

I hope you enjoy reading, browsing, and learning.

Yours.

Hauke Kastens

Head of Product Management Mobile Gas Measurements

PS: My sincere thanks go to everyone involved in this revision.

2 Properties of dangerous gases and vapors

Flammable and toxic gases and vapors occur in many areas. It is important to recognize the danger they pose – and that is the purpose of gas detection and warning devices. This handbook is meant to give a basic introduction to gas detection technology, measuring principles and safety concerns.

2.1 Gases - what is a gaseous matter?

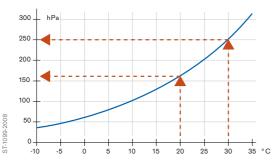
Matter at a temperature above its boiling point is referred to as a gas. In terms of the normal human environment, this means that all those substances whose boiling points at normal atmospheric pressure are below 20°C (68° F), are gases. The lightest gas is hydrogen (H₂, fourteen times lighter than air), the heaviest gas (around ten times heavier than air) is tungsten hexafluoride (WF₆).

Under normal conditions, one cubic centimeter of gas contains thirty trillion molecules, whose average distance from one another is only around 3 nanometers. They move through space at between several hundred and several thousand meters per second but, at the same time, they collide with other molecules many billions of times each second. With the result that they only cover around 50–100 nanometers between impacts, and they continuously change their direction and transfer energy to the other molecules with which they collide.

The result is a completely random molecular motion which in macroscopic terms can be measured as temperature (average kinetic energy of all the molecules) and pressure (the average force exerted on a surface by all the molecules hitting it), as well as volume (spatial extent). Pressure, temperature, and volume are always in a fixed relationship to one another, which is governed by external conditions. In an ideal situation, they obey what is known as the "ideal gas law," namely:

- At a constant pressure, their volume changes in proportion to their temperature their volume increases when heated:
- If the volume remains the same (for example, in a closed container), then their
 pressure changes in proportion to their temperature for example, the pressure inside a container increases when heated;
- At a constant temperature, pressure changes inversely proportion to volume for instance, the interior pressure rises when gas is compressed.

The extremely fast random movement of gas molecules is also the reason why they mix freely with other gases, never to become seperated again. This molecular behavior also explains the tendency of molecules to become less concentrated (diffusion), something which plays an important role in gas detection technology. Generally speaking, these processes become faster, the more quickly the molecules move (in other words, the hotter the gas is) and the lighter the molecules are (in other words, the lighter the gas is).


2.2 Vapors - aren't they gases, too?

Unlike gas – of which there are only perhaps between 200 to 300 – the word vapor is used to describe the gaseous state of a material below its boiling point. Vapor is always in equilibrium with its fluid (and sometimes solid) phase – it condenses and vaporizes according to the temperature. This is most familiar to us with water; when moist air near the ground cools down at night, ground mist forms (condensation) – but the warmth of the morning sun dissipates the mist (evaporation).

In a closed container, a maximum vapor concentration always exists above the surface of a liquid, and this concentration is dependent on the temperature of the liquid. On a microscopic level, the vapor is a result of the random movement of the liquid's molecules combined with their ability to overcome the surface tension and mix with the air molecules above the surface.

Every liquid has a certain characteristic vapor pressure, which depends on its temperature and reaches atmospheric pressure when the liquid reaches its boiling point. A graphic depiction of this relationship is known as a vapor pressure curve, and it shows the maximum possible vapor concentration at any given temperature.

Vapor pressure curve of liquid n-hexane

If you divide the maximum possible vapor pressure by the ambient pressure, you are given the saturation concentration in Vol.-% (volume percent). Hexane gas at 20°C or 68° F (vapor pressure 162 hPa or 2.35 psi) and an ambient pressure of 1,000 hPa (14.5 psi) has a maximum possible concentration of 16.2 Vol.-%.

2.3 Our atmosphere

Our atmosphere extends far out into space, getting less dense the more it stretches. The blue color of the sky is caused by the scattering of the sun's rays on the air molecules in the atmosphere. The sky is actually already black by the time you reach a height of around 21 km (13 miles). If you were to subject the entire atmosphere to an even pressure of 1013 hPa (14.7 psi), then it would only be 8 km (5 miles) high, and the UV-absorbing stratospheric ozone layer would be a mere 3 mm (0.11 in.) high.

Typical composition of the earth's atmosphere in ppm:

	Composition				
Gas	dry	humid			
Principal gases					
N ₂ - nitrogen	780,840	768,543			
O ₂ – oxygen	209,450	206,152			
H ₂ O – water vapor	0	15,748			
Ar – argon	9,340	9,193			
CO ₂ – carbon dioxide	340	335			
Trace gases					
Ne – neon	18	18			
He - helium	5	5			
CH ₄ - methane	1.8	1.8			
Kr – krypton	1.1	1.1			
H ₂ – hydrogen	0.5	0.5			
N ₂ O - nitrous oxide	0.3	0.3			
CO – carbon monoxide	0.09	0.09			
Xe - xenon	0.09	0.09			
O ₃ – ozone	0.07	0.07			
Other trace gases	3.05	3.0			
Total	1,000,000	1,000,000			

1 Vol.-% = 10,000 ppm; assumption for humid air: 68% r.h. at 20°C (68°F)

The earth's atmosphere has a mass of around 5 quadrillion metric tons (5.235×10^{18} kg), which weighs down on an area on the earth's surface of 0.507×10^{15} m². This creates an atmospheric pressure on the earth's surface of 10,325 kg/m², which corresponds to normal atmospheric pressure: 1,013 hPa (14.7 psi). Atmospheric pressure decreases with increasing altitude:

Altitude m/ft.	Atmospheric pressure	Altitude m/ft. Atmospheric pressure		
	hPa/psi		hPa/psi	
-1.000 (-3280.8	1.148 (16.6)	2.000 (6.561,7)	795 (11.5)	
-500 (-1640.4)	1.078 (15.6)	3.000 (9.842,5)	701 (10.2)	
0 (0)	1.013 (14.7)	4.000 (13.123,3)	616 (8.9)	
500 (1640.4)	952 (13.8)	5.000 (16.404,2)	540 (7.8)	
1.000 (3280.8)	900 (13.1)	6.000 (19.685,0)	472 (6.8)	
1.500 (4921.2)	840 (12.2)	8.000 (26.246,7)	356 (5.2)	

The number of molecules in a given volume decreases with decreasing atmospheric pressure, which means that the results produced by partial pressure-measuring sensors are always dependent on the atmospheric pressure.

More than 78 Vol.-% of the earth's atmosphere is nitrogen, which is fully inert, and although available in excess, can not even be used as a much-needed fertilizer for plants. In contrast, highly reactive oxygen is fundamental to our breathing – more than that: it is the foundation of almost all life.

Just under 21 Vol.-% of the atmosphere is oxygen. A lack of oxygen is life-threatening – and cannot be perceived by the human senses.

Oxygen deficiency is generally caused by the release of an inert gas, which then in turn displace oxygen. Since the atmosphere is only around one fifth oxygen, the oxygen concentration is only reduced by around one fifth of the concentration of the inert gas. For example, if 10 Vol.-% of helium is released into the air then oxygen is reduced by 2 Vol.-% and the level of nitrogen by 8 Vol.-%. Because liquid nitrogen $(-196^{\circ}\text{C or } -321^{\circ}\text{F})$ is frequently used in industry, its evaporation can quickly cause a dangerous oxygen deficiency.

Oxygen enrichment (e.g. more than 25 Vol.-%) cannot be perceived by humans, but have severe consequences with respect to the flammability of materials, and may even cause autoignition. This is why explosion protection relates exclusively to atmospheric oxygen concentration.

At what level does it become dangerous?

Oxygen concentration in Vol%	Oxygen partial pressure in hPa/psi	Symptoms
Less than 17	Less than 170/2.5	Early stage of danger
		due to oxygen deficiency
11 to 14	110 to 140/1.6 to 2.0	Unnoticed decrease in physical and
		mental performance
8 to 11	80 to 110/1.2 to 2.0	Possible sudden loss of
		consciousness without warning
		after a certain period of exposure
6 to 8	60 to 80/0.9 to 1.2	Loss of consciousness within a few
		minutes - resuscitation possible if
		performed instantly
Less than 6	Less than 60/0.9	Immediate loss of consciousness

2.4 Ex, Ox, Tox - gas hazards!

Gases and vapors are almost always dangerous. If gases are not present in the atmospheric composition to which we are accustomed and which we can breathe, then safe breathing is threatened. Furthermore, all gases are potentially dangerous in their liquid, compressed, or normal state – the decisive factor is their concentration.

There are basically three categories of risk:

- Risk of explosion (ex) caused by flammable gases
- Oxygen (ox)

Risk of suffocation through oxygen deficiency Risk of increased flammability due to oxygen enrichment

- Risk of poisoning (tox) by toxic gases

Without equipment to assist, mankind is not in a position to detect these risks early enough to enable preventative steps from being taken. And, with a few exceptions, our nose has proven an extremely unreliable warning instrument.

For example, hydrogen sulfide can be detected in low concentrations because it smells of rotten eggs. However, the nose can no longer perceive the lethal, high concentrations of hydrogen sulfide. Many fatal accidents have occured because people have fled into what they thought was the safe, odour-free area.

Even harmless gases such as argon, helium or nitrogen can also become dangerous if they are suddenly released, displacing the oxygen that is essential to life. Then there is risk of suffocation. An oxygen concentration of less than six Vol.-% is deadly. An excess of oxygen increases the risk of fire, and can even cause flammable materials to self-ignite. By igniting, flammable gases and vapors can not only cause considerable damage to industrial plants and equipment, they can also threaten people's lives.

Therefore, it is essential to be able to detect Ex, Ox and Tox risks reliably, and to protect human life, industrial plants and equipment, as well as the environment by taking the appropriate measures. Whether Dräger-Tubes® or portable gas detectors, Dräger offers you individual solutions that meet your needs and enable you to counter gas risks professionally.

2.5 Toxic gases and vapors

The toxicity of gases and vapors used in industrial processes is defined in laboratory experiments by determining the LC_{50} rate. On that basis, and together with other scientific tests and experiments relating to occupational health at the workplace, authorized commissions in several countries make recommendations of limit values, which are legally binding. In Germany, this is the Federal Institute for Occupational safety and Health (BAuA).

This maximum allowable concentration in the air means that workers will not suffer any detrimental affects to their health if they spend their entire working lives breathing in gas concentrations, which do not exceed that level. This, however, must be assured.

Limit value	Selected substances to which this limit value applies
5,000 ppm	carbon dioxide
1,000 ppm	propane, butane
500 ppm	acetone
200 ppm	methyl ethyl ketone (MEK)
100 ppm	butanol
50 ppm	n-hexane, toluene
20 ppm	acetonitrile
10 ppm	chlorobenzene
5 ppm	diethylamine
1 ppm	1.1.2.2-tetrachloroethane
500 ppb	chlorine
200 ppb	methyl chlorformate
100 ppb	chlorine dioxide
50 ppb	glutaraldehyde
10 ppb	methyl isocyanate

Status 2010, according to TRGS 900 (Germany)

T+ Very toxic $LC_{50} < 0.5 \text{ g/m}^3$

Arsine, boron trichloride, boron trifluoride, bromine, diborane, fluorine, hydrogen cyanide, hydrogen fluoride, hydrogen phosphide, hydrogen sulfide, nitrogen dioxide, nitrogen monoxide, ozone, phosgene, sulfur tetrafluoride, tungsten hexafluoride

T Toxic
$$LC_{50} = 0.5 \dots 2.0 \text{ g/m}^3$$

Acetonitrile, ammonia, benzene, carbon disulfide, carbon monoxide, chlorine, cyanogen, hydrogen chloride, methanol, methyl bromide, nitrogen trifluoride, sulfur dioxide

LC50 (LC stands for "lethal concentration") is the gas concentration in air, which – when inhaled over a given time period (usually four hours) – kills 50% of experimental animals (normally white laboratory rats).

Carcinogenic substances

However, many substances do not develop their lethal effect until years after exposure. A still frequently underestimated risk for workers - and an enormous challenge for occupational safety - are carcinogenic substances such as formaldehyde or benzene. Basically, carcinogens are defined as substances that can cause cancer or promote the development of cancer. They can enter the body through inhalation of the ambient air, through food, but also through the skin. For carcinogenic hazardous substances in the workplace, the exposure time is decisive, i.e. the period during which workers are exposed to such a substance.

Most carcinogens do not exert their carcinogenic effects during short-term exposure. Thus, a long-term exposure to carcinogens in the workplace increases the risk of causing cancer. In this respect, even small amounts can have a damaging effect. The risk of developing cancer from exposure to a carcinogen remains for life, as some cellular damage does not have an effect until years after exposure. This includes the way in which one is exposed to the carcinogen, the length and intensity of the contact, and any genetic predisposition.

Carcinogenic substances are therefore the ,time bombs' among hazardous substances in the workplace.

2.6 Flammable gases and vapors

Flammable gases become more dangerous when they have a relatively low LEL (lower explosion limit) or flash point. The flash point is defined by the liquid's temerature-dependent vapor pressure and it's LEL.*

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C (68° F) in mba	Ignition temp. r in °C/°F
acetone	2.5	60.5	< -20/-4	246	535/995
acrylonitrile	2.8	61.9	-5/23	117	480/896
benzene	1.2	39.1	-11/12	100	555/1031
n-butanol	1.4	52.5	35/95	7	325/617
n-butyl acetate	1.2	58.1	27/81	11	390/734
n-butyl acrylate	1.2	64.1	37/99	5	275/527
chlorobenzene	1.3	61.0	28/82	12	590/1094
cyclohexane	1.0	35.1	-18/-0,4	104	260/500
cyclopentane	1.4	40.9	-37/-60	346	320/608
1.2-dichloroethane (EDC)	4.2	255.7	13/55	87	440/824
diethyl ether	1.7	52.5	-45/-40	586	175/374
1.4-dioxane	1.4	69.7	11/52	38	375/707
epichlorhydrin	2.3	88.6	28/82	16	385/725
ethanol	3.1	59.5	12/54	58	400/752
ethyl acetate	2.0	73.4	-4/25	98	470/878
ethylbenzene	1.0	44.3	23/73	10	430/806
n-hexane	1.0	35.9	-22/-8	160	230/464
methanol	6.0	80.0	9/48	129	440/824
1-methoxy-2-propanol	1.8	67.6	32/90	13	270/518
methyl ethyl ketone (MEK)	1.5	45.1	-10/14	105	475/887
methyl methacrylate	1.7	70.9	10/50	40	430/806
n-nonane	0.7	37.4	31/88	5	205/401
n-octane	0.8	38.1	12/54	14	205/401
n-pentane	1.1	42.1	-40/-40	562	260/500

 $^{^{}ullet}$ LEL values may differ regionally. The operator has to ensure to use the relevant value.

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C in mbar	Ignition temperature in °C/°F
i-propanol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1.0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	173	230/446
toluene	1.0	38.3	6/43	29	535/995
xylene (isomer mixture)	1.0	44.3	30/77	7	465/869

Gas	LEL Vol%	LEL g/m³	Ignition temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
i-butane	1.5	36.3	460/860
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.5	28,1	360/680
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
propane	1.7	31.2	470/878
propene (propylene)	2.0	35.0	485/905

Source: PTB list from the Physikalisch-Technische Bundesanstalt (PTB is the national metrology institute providing scientific and technical services). Values from NIOSH, IEC and others may differ. Please consider regional regulations.

Only flammable liquids have a flash point.

By definition, flammable gases do not have a flash point.

2.7 LEL and preventative explosion protection

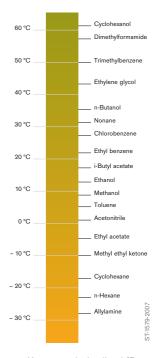

Flammable gases and vapors can form ignitable mixtures when combined with air, but the ratio of flammable gas to oxygen (or air) must lie within certain limits.

The lower explosion limit (LEL) is defined as the concentration of combustion gas (stated in Vol.-%) at which, under standardized conditions, the gas-air mixture can be ignited and will continue to burn on its own accord. The LEL of all known flammable gases and vapors lies in a range of approximately 0.5 to 15 Vol.-%. The LEL of hydrogen in air, for instance, is 4 Vol.-%. Accordingly, a gas sample containing 2 Vol.-% of hydrogen in air can definitely not be ignited.

Concentration limitation

This behavior of gases and vapors has important consequences for practical explosion protection. If a flammable gas cannot be ignited below it's LEL, then we can protect people against explosions by measuring the gas concentrations continuously and using appropriate measures to ensure that concentrations never exceed a level such as half the LEL (50% LEL).

This method of preventative explosion protection is often referred to as a primary measure. What is prevented is not the ignition of the gas, but the very formation of an atmosphere which can explode. The preferred method of measuring these concentrations is to use infrared or catalytic bead sensors, which, when used for this purpose, must fulfill certain safety requirements.


ST-1577-2007

2.8 Flash point of flammable liquids

Although we speak of flammable liquids, in fact, the liquid state is not flammable. It is the vapor, which can form a flammable mixture together with the oxygen in the air. Both the volatility of this vapor and its lower explosion limit (LEL) comprise the measure of its potential danger. This is described by what is known as the flash point.

To be able to ignite at all, the concentration of vapor above the surface of the liquid must exceed the LEL. Whether it does so or not depends on how much vapor is produced. This, in turn, depends on what is known as the vapor pressure, which depends upon the temperature of the liquid. In safety terms, this is described by defining a flash point (F). The flash point is the temperature at which sufficient vapor forms to create a vapor-air mixture, which can be ignited in a standardized apparatus. If a flammable liquid's flash point is above 50°C (122° F), then it definitely cannot be ignited at a temperature of 30°C (86° F).

Therefore, the lower the flash point of a flammable liquid, the more dangerous it is. Because the vapor of a flammable liquid is not ignitable below its flash point, preventative explosion protection can consist of using liquids whose flash points are significantly higher than the ambient temperature. This is often done in practice, but it does have the disadvantage – when using such liquids as solvents – that large amounts of energy are required to evaporate them. Gases by definition do not have a flash point, because under normal conditions they do not exist in liquid form.

You cannot ignite diesel (F > 55°C) using a match, but you can ignite gasoline with one (F < -20°C)!

2.9 Concentration and their calculation

Concentration is defined as the content of a substance within a reference substance. When measuring harmful substances in the air, the quantity of that substance is defined in terms of a concentration in relation to the air. The right units must be chosen to produce useful figures for defining the concentration. High concentration is generally given as Vol.-% – in other words, one part of a substance to 100 parts of air. Air, for example, consists of 21% Vol.-% oxygen, which means that 100 parts of air contain 21 parts of oxygen. Lower concentration levels are measured in ppm = parts per million (mL/m^3), or ppb = parts per billion ($\mu L/m^3$). A concentration of one ppm means there is one part of a substance in one million parts of air (the rough equivalent to one sugar cube inside a gasoline tanker). A concentration of one ppb refers to one part of a substance in one billion parts of air (equivalent to five people out of the entire population of the earth). Converting these very low concentrations into Vol.-% produces the following simple relationship:

1 Vol.-% = 10,000 ppm = 10,000,000 ppb

Alongside gaseous components, the air can also contain 'dissolved' solid or liquid substances, known as aerosols. The size of droplets or particles borne by the air is very small, which means that measuring them in terms of volume is not very useful. Aerosol concentrations are therefore measured in mg/m^3 .

		Vol%	ppm	ppb
Vol% =	10 L/m ³ 1 cL/L	1	10 ⁴	10 ⁷
ppm =	mL/m³ µL/L	10-4	1	10 ³
ppb =	μL/m³ nL/L	10 ⁻⁷	10 ⁻³	1

		g/L	mg/L	mg/m³
g/L =	10 L/m ³ 1 cL/L	1	10 ³	10 ⁶
mg/L =	mL/m³ µL/L	10-3	1	10 ³
mg/m³	μL/m³ nL/L	10 ⁻⁶	10 ⁻³	1

Converting mg/m³ into ppm

$$c_{\text{[ppm]}} = \frac{\text{Molar volume}}{\text{Molar mass}} \quad c \quad c_{\text{[mg/m³]}} = \frac{\text{Molar mass}}{\text{Molar volume}}$$

The molar volume of any gas is 24.1 L/mol at 20°C (68° F) and 1,013 hPa (14.7 psi); the molar mass of a specific gas should be adapted dependent on that gas.

3 Introduction to portable instruments

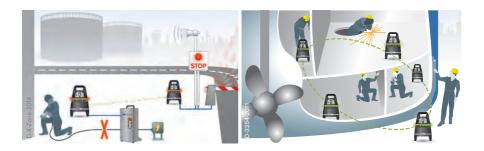
In the beginning, there was the canary. These little finches would warn miners about dangerous gases underground: if they stopped singing, the miners had to get out quick. Crude and inaccurate methods of determining gas concentrations in the atmosphere like this one have long been consigned to history.

Nowadays, precise measuring instruments monitor the concentration of dangerous gases and flammable vapors. The latest of these are compact, small, robust and flexible single-gas and multi-gas units. Gases and vapors are not always necessarily harmful; after all, the earth's atmosphere is made of them. It is not until their concentration exceeds critical levels (risk of poisoning and explosion) or drops below certain levels (risk of suffocation through oxygen deficiency) that they can become a threat. This is why portable gas detection devices are used in all kinds of ways throughout many branches of industry. Scenarios range from individual employees and small groups of workers – all the way to large-scale operations such as the industrial shutdown of an entire petrochemical plant. Instruments measuring the various dangerous gases have to perform reliably under changing conditions. This can place great demands on reliability, durability, and flexibility, because in the end the detection equipment is directly responsible for the safety and health of workers. Not every unit may be used in every working environment. Before a device is used, you have to determine whether its specifications are sufficient. These requirements are all laid down in various standards and directives.

3.1 Application areas for portable gas detection

Portable gas detection instruments are subject to very diverse requirements. Different application areas require solutions tailored to the measurment task, which also take into account the respective ambient conditions.

It is generally possible to distinguish between the following application areas:


Personal monitoring

- These devices are designed to warn the wearer about gas risks in the immediate vicinity. For this reason, they are usually worn on work clothing. The basic requirements that these units therefore have to fulfill are wearing comfort, durability, and reliability. Continuously measuring single-gas and multi-gas instruments are suitable for this kind of work.

Area monitoring

- In contrast to the personal gas detector area monitors will be placed at central or critical locations to monitor workspaces optimally and independently from persons.
- For this, the basic requirements are robustness, stability and excellent alarm awareness (optical and acoustic) as well as a longest possible battery runtime. Increased security level can be achieved by connecting the area monitors to wireless alarm chains and by transferring the measurement values from instrument to instrument as well as to mobile terminals.

Confined space entry

Maintenance and repair work often require people to climb into confined spaces. These areas of work can be especially dangerous because of the lack of space, the lack of ventilation, and the presense or development of hazardous substances. A clearance measurement is required before entry. Multi-gas instruments are used together with corresponding pumps and accessories such as hoses and probes. After a successful measurement where no hazards have been found, the same instruments can be used for continuous personal monitoring while working in the confined space.

Leak detection

Leakages can occur wherever gases or liquids are stored or transported. It is important to
identify leakages quickly so that the appropriate measures can be taken to avert harm to
people, the environment, and the facility. Detection devices combined with corresponding
pumps must be able to respond quickly so as to detect small changes in concentration.
High levels of reliability are another minimum requirement for these measuring instruments.

3.2 Requirements for gas detection instruments

As safety products, gas detection devices for industrial use must fulfill the statutory requirements (explosion protection, electromagnetic compatibility), as well as other requirements, so that their quality and reliability remains assured even under tough conditions.

Explosion protection standards:

Design stipulations ensure that the gas measuring instrument does not become a source of ignition itself. Globally accepted standards include CENELEC (ATEX), CSA, UL, EAC, etc.

Protection ratings as defined by EN 60529 (IP Code)

The IP code provides information about the degree to which a casing provides protection against foreign objects and water.

IP = International Protection/Ingress Protection Extract based on DIN EN 60529:

First Protection against Second Protection against index number solid foreign objects index number water Protection against contact. Protection against Protection against interior projected water from dust deposits any angle Complete protection Protection against against touch. Protection penetrating water during temporary flooding against dust penetration Protection against penetrating water during temporary immersion R Protection against penetrating 0-16408-2009 water during prolonged submersion

Protection class IP 67 provides a high degree of robustness, although this can have negative consequences in terms of vapor permeability. The MEWAGG research group ("Mess- und Warngeräte für gefährliche Gase") - part of BG Chemie (Germany's statutory employment accident insurance fund for the chemical industry) - therefore advises users who need to detect not only gases like methane and propane, but also higher hydrocarbons and solvents, to check the suitability of equipment with the manufacturer. This can, for example, involve a detection equipment assessment under ATEX.

Quality of measurement functions

Maintaining a predefined detection quality, even under extreme ambient conditions (temperature, pressure, wind, moisture, vibration, and so on)

EN 45 544-1/2/3 - for toxic gases and vapors

EN 50 104 for oxygen

EN 60 079-29-1 - for flammable gases and vapors (for detailed information see also

chapter 3.7 Measurement Performance Certificate according to IEC)

Electromagnetic compatibility as defined by EN 50270

Electrical and electronic devices should not be influenced or interfered with by other electrical, magnetic, or electromagnetic fields - and vice versa. For instance, this means that using a mobile phone or a radio in the immediate vicinity of gas detection devices should not interfere with the instrument's detection signal, nor should the instrument interfere with the phone. EMC guidelines and standards define means of proving and confirming a device's insensitivity to interference and low level of interference output. Simply complying with the requirements of a standard or guideline may not be sufficient depending on the various operating and ambient conditions. Rugged industrial applications require much more robust devices. Dräger pays special attention to these requirements, for example, with an additional in-house "robustness test."

RoHS and REACH

The requirements for materials and substances used must also be considered during the development and production of gas detection equipment. The European RoHS (Restriction of Hazardous Substances) Directive requires that six particularly dangerous substances may not be contained in electrical and electronic devices. The REACH Regulation (Registration, Evaluation, Authorization, and Restriction of Chemicals) requires that the presence of particularly hazardous materials in products must be disclosed. Dräger seeks to avoid such substances as far as possible within the scope of technical conditions and meets the relevant directives and regulations in this regard.

3.3 Explosion protection

Industrial processes very often involve flammable substances, including sometimes flammable particles. In these areas, flammable gases and vapors can sometimes be released on a process-related basis (such as relief valves) or by unforeseen incidents (breakdowns). As a means of prevention, areas such as these are designated EX areas ("zones") in which only equipment which is reliably protected against ignition may be used.

Explosion protection is standardized worldwide; IEC (international), CENELEC (European) and NEC 505 North American standards are similar, and based on the three-zone concept which is rapidly gaining acceptance in the USA.

Zone in IEC, NEC 505	Dangerous, explosive atmosphere exists
and CENELEC	
Zone 0	constantly, regularly or long-term
Zone 1	occasionally
Zone 2	rarely and for short periods

American explosion protection compliant with NEC 500 is still typically based on the dual division concept:

Division in	Dangerous explosive
NEC 500	atmosphere exists
Division 1	constantly or occasionally
Division 2	rarely and for short periods

3.4 ATEX 137 - directive 1999/92/EC

ATEX stands for ATmospheres EXplosibles. This directive has been binding on all systems since July 30, 2003, and is addressed to employers. It describes minimum requirements for the protection of employees' health and safety in areas at risk of explosion.

The directive pursues the following targets:

- Prevent the formation of explosive atmospheres; if this is not possible
- Prevent the ignition of explosive atmospheres; if this is not possible
- Reduce the harmful effects of an explosion to a tolerable minimum.

Employers are obliged to assess the risk of explosion in the relevant areas. Zone categories are defined by answering the question: how likely is it that an explosive atmosphere (gas, vapor, dust) will form in the areas concerned?

ZONE DEFINITIONS IN ATEX 137, ANNEX I, 2

	Areas at risk of explosion are divided into the following zones according to the likelihood of
	an explosive atmosphere forming there:
Zone 0	Area in which explosive atmospheres comprising mixtures of air and flammable gases,
	vapors, and aerosols are present constantly, frequently, or over long periods of time.
Zone 1	Area in which, under normal operation, an explosive atmosphere can occasionally form as
	a mixture of air and flammable gases, vapors, or aerosols.
Zone 2	Area in which, under normal operation, an explosive atmosphere consisting of a mixture of
	air and flammable gases, vapors, or aerosols normally does not form - or, if so, only briefly.
Zone 20	Area in which explosive atmospheres in the form of clouds of combustible dust in the air
	are present constantly, frequently, or over long periods of time.
Zone 21	Area in which, under normal operation, an explosive atmosphere can occasionally form as
	clouds of combustible dust in the air.
Zone 22	Area in which, under normal operation, an explosive atmosphere in the form of a cloud of
	combustible dust in the air normally does not form - or, if so, only briefly.

Depending on the zone identified, only certain gas measuring instruments may be used there (this table links the categories of ATEX 95 with the zones in ATEX 137):

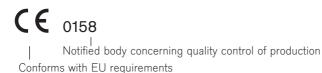
Permitted use	Gas, vapor (G)	Dust (D)
Instruments in category 1	Zone 0, 1, 2	Zone 20, 21, 22
Instruments in category 2	Zone 1, 2	Zone 21, 22
Instruments in category 3	Zone 2	Zone 22

(For instrument categories, see section 3.5 ATEX 95)

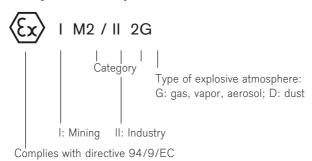
The instrument group and temperature category requirements are then determined by defining the flammable gases, vapors, aerosols, and dusts used, along with their ignition temperatures.

Extract from section 2.6 "Flammable gases and vapors"

Gas	LEL	LEL	Ignition
	Vol%	g/m³	temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
i-butane	1.5	36.3	460/860
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.2	28,1	360/680
propane	1.7	31.2	470/878
propene (propylene)	2.0	35.0	485/905


Vapor	LEL	LEL	Flash point Vapor pressure Ignition temper		Ignition temperature
	Vol%	g/m³	in °C/°F	at 20°C (68°F) in mba	ar in °C/°F
isopropyl alcohol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1,0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	200	230/446
toluene	1.0	38.3	6/43	29	535/995
xylol (isomer mixture)	1.0	44.3	25/77	7	465/869

3.5 ATEX 95 - directive 94/9/EC


This directive applies to, among others, the manufacturers of gas detection and warning instruments. It describes the requirements that must be fulfilled by gas detection devices used in areas at risk of explosion, and which incorporate their own potential ignition sources.

The CE symbol of conformity - coupled with information about the equipment category (described the zones of the area at risk of explosion in which the gas warning instrument may be used as an electrical device) may look like this:

Markings as defined by 94/9/EC (ATEX 95)

Markings (as defined by ATEX):

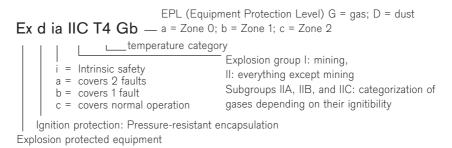
Equipment groups I and II indicate in which area the device may be used:

I = MiningII = Industry

Information then follows about which equipment category the gas detection device satisfies:

Category 1	Very high level of safety, sufficient safety provided by two protective			
	measures or in the event of two faults			
Category 2	Sufficient safety in the event of frequent equipment faults or one			
	breakdown			
Category 3	Sufficient safety if operation is fault-free			

Finally, the atmosphere is indicated (G: gas, vapor, aerosol or D: conductive and non-conductive combustible dusts).


The designation indicates the zones in which the instrument may be used (example for industry).

Ex area:	Zone 0	Zone 1	Zone 2	Zone 20	Zone 21	Zone 22
Ex atmosphere:	constantly,	occasionally	normally	constantly,	occasionally	normally
	long-term		not or only	long-term		not or only
	or frequently		short-term	or frequently		short-term
II 1 G	yes	yes	yes	no	no	no
II 2 G	no	yes	yes	no	no	no
II 3 G	no	no	yes	no	no	no
II 1 D	no	no	no	yes	yes	yes
II 2 D	no	no	no	no	yes	yes
II 3 D	no	no	no	no	no	yes

MINING

Instrument category	Safety
I M1	Very high level of safety, may remain in operation
	at high methane concentrations
I M2	High level of safety, must be switched off
	at high methane concentrations

Explosion protection marking in EN 60079

The requirements for electrical equipment to be used in hazardous areas are outlined in the standard series EN 60079. In addition to the requirements, markings are defined as well. A marking according to ATEX as well as a marking to indicate the equipment protection level (EPL = Equipment Protection Level) is required. With the introduction of the EPL, it is now possible to allocate which device may be used in which explosive atmosphere or area outside of Europe as well.

Ignition protection types provide information about the protective measures incorporated into a device:

Ignition protection types and CENELEC standards

Abbreviation	CENELEC standard	Ignition protection type
Gas		
	EN 60079-0	General requirements
Ех о	EN 60079-6	Oil immersion
Ех р	EN 60079-2	Pressurized encapsulation
Ex m	EN 60079-18	Encapsulation
Ex q	EN 60079-5	Powder / Sand filling
Ex d	EN 60079-1	Explosion/Flame-proof
		encapsulation
Ex e	EN 60079-7	Increased safety
Ex ia	EN 60079-11	Intrinsic safety (also for dust)
Ex ib		ia required for Zone 0 & 20
Ec ic		ib sufficient for Zone 1 & 21
		ic sufficient for Zone 2 & 22
Dust		
Ex ta	EN 60079-31	ta required for Zone 0
Ex tb		tb required for Zone 1
Ex tc		tc required for Zone 2

Comparison: Designation according to IEC (2007) / CENELEC (2009) and EU directive 94/9/EG (ATEX)

EPL (Equipment Protection Level)					
according to	according to according				
IEC / CENELEC	to EU directive 94/9/EG				
Ma	M1	Mining			
Mb	M2				
Ga	1G	explosive gas atmosheres			
Gb	2G				
Gc	3G				
Da	1D	area with combustible dust			
Db	2D				
Dc	3D				

Explosion group

Explosion group I encompasses equipment used for mining (coal dust and methane atmospheres). Explosion group II applies to all other areas (all other gases). For the ignition types "explosion/flame-proof encapsulation" and "intrinsic safety," explosion group II is subdivided into IIA, IIB, and IIC. This subdivision relates to the different levels of ignitability in terms of ignition penetration and electrical sparks. Explosion group IIC covers all gases and vapors. In the future, we will also see explosion group III for flammable dusts, and this in turn will be subdivided in three other groups (IIIA: flammable fibers, IIIB: non-conductive dust, IIIC: conductive dust).

CATEGORIZATION OF GASES AND VAPORS

Explosion group	Temperature category (max. permissible surface temperature)					
	T1 (450°C)	T2 (300°C)	T3 (200°C)	T4 (135°C)	T5 (100°C)	T6 (85°C)
Ignition temp.	> 450°C	300-450°C	200-300°C	135-300°C	100-135°C	85-100°C
	> 842°F	572-842°F	392-572°F	275-572°F	212-275°F	185-212°F
1	methane					
IIA	acetone	isoamyl acetate	amyl alcohol	acetaldehyde		
Ignition energy	ammonia	n-butane	benzine			
more than	benzene	n-butanol	diesel fuel			
0.18 mJ	ethyl acetate	1-butene	heating oil			
	methane	propyl acetate	n-hexane			
	methanol	i-propanol				
	propane	vinyl chloride				
	toluene					
IIB	hydrogen	1.3-butadiene	dimethyl ether	diethyl ether		
	cyanide					
Ignition energy	coal gas	1.4-dioxane	ethylglycol			
0.06 to 0.18 mJ		ethylene	hydrogen			
			sulfide			
		ethylene oxide				
IIC	hydrogen	acetylene				carbon
Ignition energy						disulfide
less than 0.06 mJ						

Temperature category

Electrical equipment in group II is categorized according to the maximum surface temperatures that are allowed to come into contact with explosive atmospheres. The ignition temperature of the gas must be greater than the maximum surface temperature. T6 covers all gases and vapors. For dust explosion protection, the maximum surface temperature is specified in $^{\circ}$ C, e.g. T130 $^{\circ}$ C (266 $^{\circ}$ F).

The last part of the designation, the EC construction type certificate, shows among other things which testing station tested the equipment and when the first time.

EC construction type certification:

3.6 Laws and regulations in USA, Canada, and Mexico

Laws and regulations in most municipalities, states, and provinces in North America require certain products to be tested to a specific standard or group of standards by a Nationally Recognized Testing Laboratory (NRTL). There are a number of third party approval agencies in the US – UL, FM, ETL and many others. They all provide listings or classifications for explosion protection and provide some performance testing. They do not have any regulatory or legal status. They are primarily a certification to verify the safety of a product for insurance purposes and to minimize liability. Most of the NRTL are also recognized for certifications for Canada.

Underwriters Laboratories Inc. (UL)

is a private third party product safety certification organization. UL develops standards and test procedures for products, materials, components, assemblies, tools and equipment, chiefly dealing with product safety. UL is one of several companies approved for such testing by the U.S. federal agency OSHA (Occupational Safety and Health Administration). OSHA maintains a list of approved NRTL's.

UL develops standards for safety, often based on American National Standards (ANSI) and evaluates many types of products. A typical standard for electronic products includes not only requirements for electrical safety, but also risk of fire and mechanical hazards. UL evaluates products for compliance with specific safety requirements. UL develops its Standards to correlate with the requirements of installation codes, such as the National Electrical Code (NEC).

As one method of protection, UL evaluates instruments for Intrinsic Safety (IS) for use in hazardous areas. The IS rating means that the instrument will not be the source of ignition in a potentially explosive environment. The areas are defined by the type of hazard that may exist (Class), the possibility of a hazard being present in the area (Division) and the specific hazards that may be encountered (Group). UL 913 is the applicable Standard for Safety for Intrinsically Safe Apparatus and Associated Apparatus for Use in Class I, II, and III, Division 1, Hazardous (Classified) Locations.

Hazardous Location:

An area where the possibility of explosion and fire is created by the presence of flammable gases, vapors, dusts, fibers or filings.

Class I	Those areas in which flammable gases or vapors may be present in the air in
	sufficient quantities to be explosive or ignitable.
Class II	Those areas made hazardous by the presence of combustible dust.
Class III	Those areas in which there are easily ignitable fibers or filings present, due to
	type of material being handled, stored or processed.

Division 1	1 In which ignitable concentrations of hazards exists under normal operat			
	conditions and/or where hazard is caused by frequent maintenance or repair			
	work or frequent equipment failure.			
Division 2	In which ignitable concentrations of hazards are handled, processed or			
	used, but which are normally in closed containers or closed systems from			
	which they can only escape through accidental rupture or breakdown of			
	such containers or systems.			

Groups

The gases and vapors of Class I locations are broken into four groups by the codes A, B, C and D. These materials are grouped according to the ignition temperature of the substance, its explosion pressure and other flammable characteristics.

Class II - dust locations - groups E, F & G. These groups are classified according to the ignition temperature and the conductivity of the hazardous substance.

The gases and vapors of Class I locations are	Group A	Acetylene
broken into four groups by the codes A, B, C	Group B	Hydrogen
and D. These materials are grouped according	Group C	Ethyl-Ether, Ethylene,
to the ignition temperature of the substance,		Cycle Propane
its explosion pressure and other flammable	Group D	Gasoline, Hexane, Naphtha,
characteristics.		Benzene, Butane, Propane,
		Alcohol, Lacquer Solvent
		Vapors, Natural Gas
Class II – dust locations – groups E, F & G.	Group E	Metal Dust
These groups are classified according to the	Group F	Carbon Black, Coal,
ignition temperature and the conductivity of the		Coke Dust
hazardous substance.	Group G	Flour, Starch, Grain Dust

Operating Temperature Codes

Maximum Tempera	ture	NEC 500 CSA/UL Codes	IEC, ATEX NEC 505 Codes
Degrees C	Degrees F	Temperature Codes	Temperature
Codes			
450	842	T1	T1
300	572	T2	T2
280	536	T2A	
260	500	T2B	
230	446	T2C	
215	419	T2D	
200	392	T3	T3
180	356	ТЗА	
165	329	ТЗВ	
160	320	T3C	
135	275	T4	T4
120	248	T4A	
100	212	T5	T5
85	185	T6	T6

These are simplified definitions – refer to National Electrical Code (NEC), Article 500 for complete definitions.

Notes

- 1) T1 through T2D not applicable to Class II location.
- 2) T2A through T2D, Class I Group D only.

A typical UL classification would look like this:

Only as to intrinsic safety for use in hazardous locations

Class I&II, Div.1, Grps A,B,C,D,E,F,G

Safe in atmospheres containing the gases listed in the chart above
Use in areas where the hazard could exist at any time

For use in potentially explosive gas or dust atmospheres

As part of a global harmonization effort, the Zone classification system can be used in North America on a voluntary basis (refer to article 505 of the NEC).

NEC 500	IEC, ATEX
CSA/UL	NEC 505
Codes	Codes
Division 1: Where ignitable concentrations	Zone 0: Where ignitable concentrations of
of flammable gases, vapors or liquids:	flammable gases, vapors or liquids are
 Are likely to exist under normal operating 	present continuously or for long periods of
conditions	time under normal operating conditions.
 Exist frequently because of maintenance/ 	Zone 1: Where ignitable concentrations of
repair work or frequent equipment failure	flammable gases, vapors or liquids:
	 Are likely to exist under normal operating conditions
	- May exist frequently because of repair,
Division 2: Where ignitable concentrations	maintenance operations or leakage
of flammable gases, vapors or liquids:	Zone 2: Where ignitable concentrations of
 Are not likely to exist under normal 	flammable gases, vapors or liquids:
operation conditions	 Are not likely to exist under normal
- Are normally in closed containers where	operation conditions
the hazard can only escape through	 Occur for only a short period of time
accidental rupture or breakdown of such	- Become hazardous only in case of an
containers or in case of abnormal	accident or some unusual operating
operation of equipment.	condition

US Mine Safety Health Administration (MSHA)

In the United States, equipment for use in mines must be approved by the US Mine Safety Health Administration (MSHA). MSHA maintains its own test facilities and has specific standards for electrical equipment being used in mines. MSHA defines and enforces safety regulations for all types of mining operations as legislated by the US Congress. This includes both underground and above ground coal mines, metal/nonmetal mines and large tunneling operations. The MSHA approval process is a legal requirement for use of equipment in a mine. MSHA considers all underground operations as hazardous locations. An MSHA approval reads a bit differently than a UL approval label:

Permissible Gas Monitor

Tested for intrinsic safety in Methane-Air mixtures only

The Canadian Standards Association (CSA)

The Canadian Standards Association (CSA) is a not-for-profit association composed of representatives from government, industry, and consumer groups. They are involved with many diverse areas of specialization such as climate change, business management and safety and performance standards, including those for electrical and electronic equipment, industrial equipment, boilers and pressure vessels, compressed gas handling appliances, environmental protection, and construction materials. CSA also provides advisory services, training materials and print and electronic published standard documents. Currently forty percent of all the standards issued by CSA are referenced in Canadian legislation.

CSA developed the CAN/CSA Z299 series of quality assurance standards still in use today. They are an alternative to the ISO 9000 series of quality standards.

They do all of the review and testing for Intrinsic Safety and conduct performance testing. They propose standards which are often codified into law or become de facto standards in Canada. CSA is a recognized NRTL for testing and safety, not only for Canada but also for the US.

Mexican Safety and Health

Mexican Safety and Health is controlled by the Norma Official Mexicana (NOM) regulations. Nom -005-STPS-1998 is very comparable to 29 CFR 1910.1200, the basic OSHA regulation in the US. While using US OSHA regulations as a basis, the Mexican government has implemented local requirements. They accept the testing and standards of any of the Nationally Recognized Testing Labs.

HAZARDOUS LOCATIONS CLASSIFICATIONS

Classification Material Presence	IEC, ATEX NEC 505 Codes	
Gas & Vapors		
Acetylene	Group IIC	Class I/
		Group A
Hydrogen	Group IIB	Class I/
		Group B
Ethylene	Group IIB	Class I/
		Group C
Propane	Group IIA	Class I/
		Group D
Methane	Group I or IIA	Class I/
		Group D
Dust		
Metal	Group IIIC	Class II/
		Group E
Coal	Group I or IIIC	Class II/
		Group F
Grain	Group IIIB	Class II/
		Group G
Fibers (All)	Group IIIA	Class III

3.7 Measurement Performance Certificate according to IEC

What is a "Measurement Performance Certificate"?

A measurement performance certificate (Type Examination Certification) is a verification and certification of the measuring function of a gas detector. The certification is based on various legal regulations, such as the ATEX Directive (European Directive 2014/34/EU) or occupational health and safety regulations.

Occupational health and safety regulations are oriented to the "state of the art". Example: In Germany the state of the art is described in occupational insurance association publications T021 and T023.

Standards are applied to ensure consistent certification. Based on the requirements of standards, test centers and approval agencies can test the suitability and classification of devices and issue certificates. The quality of measurements is tested under extreme environmental conditions (e.g., temperature, pressure, moisture, vibration, etc.).

Which standards are primarily applied for a measurement performance certificate? The most relevant standards for gas warning devices are described below:

EN 60079-29-1	Explosive atmospheres – Part 29-1: Gas detectors - Performance
	requirements of detectors for flammable gases
EN 50104	Electrical equipment for the detection and measurement of oxygen -
	Performance requirements and test methods
EN 50271	Electrical apparatus for the detection of combustible gases, toxic
	gases, or oxygen - Requirements and tests for apparatus using
	software and/or digital technologies
	Notice: This standard is applicable for the operation and signaling
	of devices which are not considered in the "metrological standards"
	but are necessary for safe operation of the devices. The standard
	is a supplement to the "metrological standard" and can only be
	(meaningfully) applied in conjunction with them. The following are
	regulated, among others: Behavior in case of errors, special states,
	messages, calculation and rounding errors, test routines,
	requirements for the software development process, etc.
EN 45544-1/2/3	Workplace atmospheres – Electrical apparatus used for the direct detec-
	tion and direct concentration measurement of toxic gases and vapors -
	Part 1: General requirements and test methods
	Part 2: Performance requirements for apparatus used for exposure
	measurement
	Part 3: Performance requirements for apparatus used for
	general gas detection

Notice: EN 45544 is not part of the regulated area of the ATEX Directive. However, it can be applied for metrological tests in the area of occupational health and safety by the manufacturer.

Also, to be mentioned:

IEC 60079-29-1 Explosive atmospheres - Part 29-1: Gas detectors - Performance requirements of detectors for flammable gases. This is the international standard (IEC = International Electrotechnical Commission), but in Europe the EN version must be used. This standard is also applied in North America and replaces (in the future) the previous local standards for gas detectors for the measurement of flammable gases. The IEC version contains only rudimentary requirements for the software and the software development process (this is regulated separately in Europe in EN 50271). The standard also contains requirements for electromagnetic compatibility.

These standards are regularly updated and adapted to the state of the art. The current version is valid, but a transition period applies when a new edition is published. The transition period is used to transfer European or international standards into local standards, for example a European EN standard into a German DIN EN standard. The manufacturers should also be given time to make any necessary adjustments to their products. During the transition period, manufacturers can use both the old and the new standard for testing.

When does a customer need a Measurement Performance Certificate (Type Examination Certification for metrology)?

A) Europe (legally regulated area of the European Union):

- 1. ATEX Directive: In addition to electrical safety, the ATEX Directive specifies requirements for the measuring function for primary protection against explosion (Ex and O_2): If a user wants to use gas detectors for the so-called "primary explosion protection", the detectors must have a Type Examination Certification for the measurement of flammable gases and oxygen (inertization). This includes tests in accordance with EN 60079-29-1, EN 50104 and EN 50271. Primary explosion protection is the prevention of potentially explosive atmospheres. Examples of measures for "primary explosion protection" include:
 - Inertization and associated measurements (measuring function for explosion protection: monitoring low/high concentrations of oxygen for explosion protection).
 - Clearance measurements in confined spaces (flammable gases). This is also explicitly stated in the EN 60079-29-2.
 - Measurements as part of a safety concept that switches automatic equipment (e.g., ventilation).

The operator of a plant in which there are potentially explosive atmospheres is obliged to prepare an explosion protection document with a hazard analysis and a safety concept to prevent the occurrence of explosive mixtures. The document specifies whether actions for primary, secondary, or tertiary explosion protection are required.

Devices for personal monitoring of an employee or workplace, which, in the event of an alarm, cause the user to escape, do not belong to the area of explosion protection, but are part of the occupational health and safety. A personal gas measuring device does not necessarily have to be metrologically tested since it is "only" used for monitoring and alarming.

However, associations or (private) companies may have their own regulations that require a Measurement Performance Certificate.

- 2. Shipping: The Marine Equipment Directive (MED) must be applied for shipping applications: The steering wheel marking (MED) is issued (only) with measurement performance certificate and is time limited. The MED Directive is also part of the legally regulated area.
- 3. Occupational health and safety: In addition, there is the area that is not regulated by law. In Germany, this is expressed via the recommendations (= state of the art) in the form of leaflets T021 and T023 of the Employer's Liability Insurance Association for Raw Materials and the Chemical Industry (BG RCI):
 - T021 "Gas Detection Equipment for Toxic Gases/Vapors and Oxygen- Use and Operation" (Ox/Tox)
 - T023 "Gas Detection Equipment for Explosion Protection Use and Operation" (Ex) Among other things, these documents regulate in detail the maintenance and servicing of gas detectors. This includes a graduated system of various checks to maintain the function of the devices. The documents represent the state of the art and were prepared with the participation of the manufacturers, operators, testing bodies and accident insurers. The leaflets represent a technical elaboration of the guidelines of the Industrial Safety Regulation ("Betriebssicherheitsverordnung", Germany) regarding the inspections to be carried out. Deviations from the documents should only be made based on a conscientious risk assessment (Germany).

B) Outside Europe:

Measurement Performance Certificates are also performed under other standards.

Examples of approvals with metrological testing include are:

- Canada/USA: UL/CSA approval

Some customer groups also have separate approval processes, for example:

- USA: Mine Approval (MSHA)

Outlook for the future:

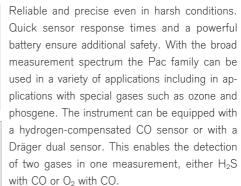
The (European) EN 45544-1/2/3 series of standards is to be replaced in the future by the (international) ISO/IEC 62990-1 standard. EN 45544-4 is expected to be replaced by IEC 62990-2. It is expected that this standard will be based on the concept of EN 45544.

3.8 Single-gas measuring instruments

If the danger of toxic gases or vapors can be narrowed down to a single gas or condustive component, then single-gas measuring and warning devices are the ideal solution for personal monitoring in the workplace. They are small, robust, and ergonomic. These devices are usually attached to the work clothing near the breathing area, but do not limit the movement of workers. They monitor the ambient air continuously and produce an alarm (visual, acoustic, and by vibration) if the gas concentration exceeds an alarm limit preset in the device. This enables employees to respond immediately to dangers if accidents occur during normal operation, or if unforeseen events occur during maintenance and repair work.

Dräger Pac Family

Each instrument of the Pac family is equipped with one XXS sensor. These miniaturized electrochemical sensors enable a small, ergonomic instrument design. The sensor sits right behind a replaceable dust and water filter which protects it from outside influences. A powerful battery and the extended application range from -40°C to + 55°C for the Pac 6x00/8x00 series provide more safety even in extreme environments. Additional sensors, like ozone and phosgene, or the use of dual sensors, like CO LC / Oo and the hydrogen compensated CO sensor (CO H₂-CP), extend the range of application of the handy single gas detectors. The green illuminating D-Light shows the device is tested and ready. Alarm thresholds are stored in the instrument (A1 = pre-alarm/A2 = main alarm). Instruments with an oxygen sensor provide the possibility of alarming with a pre- and a main alarm for both rising and falling concentrations. If the gas concentrations exceed or fall below these alarm thresholds, the instrument sets off an audible, visual, and vibrating alarm. A large non-verbal display indicates important information such as the respective gas concentration or remaining operating time and battery capacity. Durability and explosion protection are two other important factors when choosing the right gas detection device. Accessories like the Bump Test Station or X-dock Module can be easily used for the entire instrument family.


Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases / vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases.

Dräger Pac 6000/6500 and Dräger Pac 8000/8500

OTHER BENEFITS

Compliance-Signal (D-Light) for more safety

Extended application range due to a wide temperature range and additional sensors

Cost-efficient because of durable sensors and powerful battery

Clear reading due to white backlight

Optimal monitoring of oxygen concentrations (saturation or deficiency) with respective pre and main alarms
Ready for use again quickly, due to easy changeable dust filter in case of pollution

Optional Bluetooth® module for Pac 6500, 8000, 8500 to connect to the GDC App for Android and iOS

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Clear sensor identification by colored instrument
	marking
	Alarm display is configurable as "not acknowled-
	geable"
	More applications because of extended sensor
	portfolio including dual XXS sensors
	Increased resilience to environmental influences,
	for example usage up to -40°C
	Third alarm threshold for CO monitoring

The Pac 6x00/8x00 is protected against water, dust and other foreign bodies by a special membrane filter. When the filter becomes heavily soiled in use, you quickly and easily can replace it yourself. The device is then ready to use again right away. Thanks to the powerful battery, Pac instruments with H_2S or CO sensors can be used for two years at a 24/7 usage and one alarm minute per day without having to change the battery.

With the new Bluetooth® enabled Pac, you can wirelessly transmit live readings to the Dräger Gas Detection Connect System. You can easily track the location of the employee and their Pac by connecting the device to the Gas Detection Connect Gateway app. Dräger Pac devices can be integrated into third-party applications via the OpenGATT protocol.

TECHNICAL SPECIFICATIONS

Dimensions (B x H x T) (mm)	64 x 84 x 20 without clip
Weight (g)	approx. 106 (113 with clip)
Typ. battery life:	24 months at 24 h usage/day, 1 min alarm/day
(under standard conditions):	O ₂ sensor: 10 months
	Dual sensors (w/o O ₂): 22 months
Ambient conditions:	
Temperature	-30 to +55 / -22 to 131 °F
(Temperature depending on sensor)	-40 °C / -40°F short-term up to 1h
Pressure (hPa)	700 to 1300
Humidity (% r. h. non-condensing)	10 to 90
Ingress protection	IP 68
Alarms:	
Visual	360°
Acoustic (dB)	Multi-tone > 90 in 30 cm (1ft.)
Vibration	yes
Power supply	Replaceable lithium thionyl chloride battery

FEATURES COMPARISON

	Dräger Pac 6000	Dräger Pac 6500	Dräger Pac 8000	Dräger Pac 8500
Compatible sensors	_ <u> </u>	Diagon i do occo	Diagon i do occo	Diagon i do coco
XXS EC Sensors	CO LC, O ₂ , H ₂ S LC, SO ₂	CO LC, O ₂ , H ₂ S LC, SO ₂	NO, CO ₂ , Cl ₂ , HCN, NH ₃ , PH ₃ , OV, OV-A, NO ₂ LC, Ozone, Phosgene	CO H ₂ -CP, CO LC/H ₂ S LC, CO LC/O ₂
Operation time	2 Years	Unlimited	Unlimited	Unlimited
Event logger/Data logger:	Storage of peak or average values and events with date and time	Storage of peak or average values and events with date and time TWA, STEL	Storage of peak or average values and events with date and time TWA, STEL	Storage of peak or average values and events with date and time TWA, STEL
Battery life (under standard	24 months	24 months	24 months	24 months
conditions) 24 h usage/day, 1 min alarm/day	O ₂ sensor: 10 months	O ₂ sensor: 10 months		O ₂ sensor: 10 months
Approvals:	_			
ATEX	I M1 Ex ia I Ma II 1G Ex ia IIC T4 Ga	I M1 Ex ia I Ma II 1G Ex ia IIC T4 Ga	I M1 Ex ia I Ma II 1G Ex ia IIC T4 Ga	I M1 Ex ia I Ma II 1G Ex ia IIC T4 Ga
_c CSA _{us}	Class I, Zone 0, A/Ex ia IIC T4 Ga Class II, Division 1, Groups E, F, G	Class I, Zone 0, A/Ex ia IIC T4 Ga Class II, Division 1, Groups E, F, G	Class I, Zone 0, A/Ex ia IIC T4 Ga Class II, Division 1, Groups E, F, G	Class I, Zone 0, A/Ex ia IIC T4 Ga Class II, Division 1, Groups E, F, G
IECEx	Ex ia I Ma Ex ia IIC T4 Ga	Ex ia I Ma Ex ia IIC T4 Ga	Ex ia I Ma Ex ia IIC T4 Ga	Ex ia I Ma Ex ia IIC T4 Ga
EAC – Ex-approval	PO Ex ia I Ma X 0Ex ia IIC T4 Ga X	PO Ex ia I Ma X 0Ex ia IIC T4 Ga X	PO Ex ia I Ma X 0Ex ia IIC T4 Ga X	PO Ex ia I Ma X 0Ex ia IIC T4 Ga X
RUS – Pattern Approval	XXS EC	XXS EC	XXS EC	XXS EC
Certificate of measuring instruments	Sensors: O ₂ , H ₂ S LC, CO LC, SO ₂	Sensors: O ₂ , H ₂ S LC, CO LC, SO ₂	Sensors: O ₃ , Cl ₂ , CO ₂ , HCN, PH3, NH ₃ , COCl ₂ , NO, NO ₂ LC, OV, OV-A	Sensors: CO LC/O ₂ , H ₂ S LC/CO LC, CO H ₂ -CP
CE mark	Electromagnetic compatibility (Direction 2014/30/EU)	Electromagnetic compatibility (Direction 2014/30/EU)	Electromagnetic compatibility (Direction 2014/30/EU)	Electromagnetic compatibility (Direction 2014/30/EU)

ACCESSORIES

Calibration accessories Dräger Bump Test Station Dräger X-dock 5300 Pac Series Communication accessories Dräger CC-Vision Basic, free of charge in the internet www.draeger.com

Dräger Bump Test Station

Dräger X-dock Pac 5300

Communicationcradle

Sensor grid black

Sensor grid silver

Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases/vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases. Dräger X-am 5100 can only be operated in diffusion mode.

OTHER BENEFITS

Usage in industrial area - Ex approved

Measurement performance of the sensors are independent of the device

Personal monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring

small and light
rapid respond time of the Dräger XS Sensors
Battery life > 200 hours

TECHNICAL SPECIFICATIONS

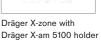
Dimensions (W × H × D)	47 x 129 x 55 mm; 1.85 x 5.08 x 2.17 in.	
Weight	ca. 220 g; 7 oz.	
Ambient conditions:	<u> </u>	
Temperature	-20 to +50; -4 to +120°F	
Pressure	700 to 1300	
Humidity	10 to 95 % r.H.	
Ingress protection	IP 54	
Alarms:		
Visual	 180°	
Acoustic	Multi-tone alarm > 90 dB in 30 cm (1 ft.)	
Vibration	yes	
Power supply	Alkaline, rechargeable NiMH for Alkaline Pack, T4	
	Akku Pack	
Battery life (h)	> 200	
Charging time (h)	< 4	
Compatible sensors	XS Sensors XS H ₂ O ₂ , XS Hydrazine, XS HF/HCL	
Operation time	unlimited	
Data logger	can be read out via IR > 1000 h at a recording	
	interval of 1 value per minute	
Approvals:		
ATEX	I M1 Ex ia I Ma	
	II 1G Ex ia IIC T4/T3 Ga	
IECEx	Ex ia I Ma	
	Ex ia IIC T4/T3 Ga	
c CSA us	Class I, Div. 1, Groups A,B,C,D TC T4/T3	
	Class I, Zone 0, A/Ex ia IIC T4/T3 /Ga	
CE mark	Electromagnetic compatibility	
	(Directive 2014/30/EU)	

ACCESSORIES

General accessories	Charging module
	Car charging connection cable 12V/24V

Calibration accessories

Communication accessories: Dräger CC-Vision Basic, free of charge in the internet www.draeger.com, Calibration adapter.



Car charging connecting cable

USB DIRA with USB cable Charging accessories

3.9 Multi-gas measuring instruments

If hazardous substances (Ex-Ox-Tox) occur in the work place, then it is advisable to use continuous multi-gas measuring instruments. These enable different measuring approaches be used (infrared, catalytic bead, PID, and electrochemical sensors) in one device, thus drawing on the strengths of the measurement principles.

The constellation of the sensors depends on the application. Up to 7 gases can be detected in real-time and continuously. As well as being used for personal monitoring and area monitoring, multi-gas measuring instruments can also be used for clearance monitorings and leak detection with the help of optional accessories. Multi-gas measuring instruments include the Dräger X-am 2800 and Dräger 2500/5000/5600 (PAM) and Dräger X-am 3500/8000 (CSE/LEAK).

DRÄGER X-AM 8000 - THE ALLROUNDER

Dräger X-am 2800

The X-am 2800 multi-gas detector measures up to four gases and is equipped with a particularly shock-resistant CatEx sensor. With the Dräger Gas Detection Connect software, it offers live data transmission and powerful fleet management. Designed for personal monitoring, the X-am 2800 offers the highest level of safety at a low cost of ownership. Small and lightweight: The X-am 2800 is comfortable to wear and easy to use even with gloves thanks to its large buttons. The display clearly shows important information such as gas readings, alarms, and time. The green D-light indicates that the unit is ready for use. All this and the language-free icon-based user interface make the use and familiarization pleasantly simple. An advantage is that existing accessories from the X-am 125 series can still be used for the unit.

OTHER BENEFITS

Robust thanks to water and dust protection according to IP 68

Important information such as gas readings, alarms, and time shown on the display

Catalytic bead sensor for measuring combustible gases and vapors: particularly robust and insensitive to shocks (drop test > 2 m) and sensor poisons

Powerful device management via smart software solution: Gas Detection Connect

Live data transmission via Bluetooth to a smartphone and from there to Dräger Gas Detection Connect

Sustainable: Long service life thanks to durable DrägerSensors, easily replaceable power supply, all components can be exchanged as spare parts and existing accessories can be reused

Personal Monitoring

Confined space entry*

Leak detection*

Live data transmission

^{*} Please contact Dräger for availability of the Dräger X-am Pump for the X-am 2800.

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Approval for the use in Ex-Zone 0, protection class IP 68
Reusable accessories of the Dräger X-am 125 family
High flexibility with the help of the external pump* (with up to 45 m long
hose), use of different probe types
Fast response time of the catalytic bead sensors and the XXS sensors
Transmission of the gathered data directly and conveniently via
Bluetooth to a smartphone and from there to the cloud software
Dräger Gas Detection Connect.

A Bluetooth® module in the X-am 2800 enables a connection to a smartphone using the Dräger Gas Detection Connect App and from there directly to the Gas Detection Connect cloud backend. Via the web application, the position and movement of persons can be viewed independent of time and location - based on GPS data of the smartphones used. Live data from Dräger devices with Bluetooth®, such as measured values and the device status, can also be checked via the web application. If an alarm occurs, information is provided immediately.

Both live events and past events that were transmitted via the smartphone app or the Dräger X-dock stations to the cloud backend and documented, can be viewed and exported at any time. All event and device data can be narrowed down using filters and search functions and thus made available for an Excel export.

Thanks to a well-thought-out role and rights management, the system can be easily adapted to the respective needs.

You decide whether your users can see the people on the map or not, whether they can see plain text names or just an ID, and whether they can access the X-dock station. Specified rights allow to create own roles and assign users individually.

TECHNICAL SPECIFICATIONS

TEGITIONE OF EGIT TONTIN	3113	
Dimensions (W x H x D) (mm)	approx. 48 x 130 x 44 mm	
Weight (g)	typical 220 to 250 g, depending on sensor selection	
Ambient conditions:		
Temperature (°C)	-20 to +50 °C / -4 to +122 °F (measurement function and storage)	
	-40 °C to +50 °C / -40 to +122 °F (use in potentially explosive areas)	
Pressure (mbar)	700 to 1,300 hPa (measurement function)	
	800 bis 1,100 hPa (use in potentially explosive areas)	
Humidity (% RH)	10 to 95 %	
	5 to 95 % RH, intermittent	
Ingress protection	IP 68	
Display	High resolution matrix display	
Alarms:		
Visual	180°	
	3 LED "red" (gas alarms),	
	3 LED "yellow" (instrument alarms)	
Acoustic (dB)	Multi-tone typical 90 dB (A) at a distance of 30 cm	
Vibration	Yes	
Power supply	rechargeable NiMH battery pack	
Bluetooth®	Bluetooth 5.0, range approx. 95 m (line of sight)	
	(Deactivated for some countries but can be retrofitted. Contact Dräger	
	Service)	
Operating time (h)	typical 12 h1) (Bluetooth active)	
	typical 100 h* (w/o Ex sensor)	
Charging time (h)	< 4 hours	
Data logger	Use of an optimized data compression method with high accuracy and	
	large storage capacity. (Typical data compression >90% compared to	
	traditional data logger concept with adjustable interval)	
Pump mode	Maximum hose length 45 m	
	(Please contact Dräger for availability of this feature)	

^{*} Nominal runtime of the gas detector at ambient conditions 20 to 25 °C, 1013 hPa, less than 1 % of the time alarming. The actual runtime varies by the ambient temperature and pressure, battery, and alarm conditions.

FEATURES

Possible sensor selection	Flexible 1 – 4 sensors (configurator version),	
	One catalytic sensor and 3 XXS EC sensors	
XXS EC sensors	O ₂ , O ₂ PR, CO LC, H ₂ S LC, NO ₂ and SO ₂ (incl. KX filter)	
Catalytic sensors		
CatEx SR	0 - 100 % LEL	
	Special calibration for organic vapors and other gases possible	
Approvals		
ATEX	I M1 Ex da ia I Ma	
	II 1G Ex da ia IIC T4 Ga (applicable in Ex zone 0)	
IECEx	Ex da ia I Ma	
	Ex da ia IIC T4 Ga (applicable in Ex zone 0)	
Measurement Performance	Please contact Dräger for availability	
Certificate		
cCSAus (USA and Canada)	Please contact Dräger for availability	
CE mark	ATEX (Directive 2014/34/EU)	
	Electromagnetic compatibility (Directive 2014/30/EU)	
	RoHS (Directive 2011/65/EU)	
EAC Ex approval	Please contact Dräger for availability	

ACCESSORIES

Charging accessories	Charging module
	Car charging connection cable 12V/24V / 230V
Calibration accessories	Dräger Bump Test Station
	Dräger X-dock Module
	Nonane tester (for function tests)
Communication accessories	Dräger CC-Vision Basic, free of charge on www.draeger.com/software
	USB Dira Dongle
	Cloud software Dräger Gas Detection Connect
Pump accessories	Dräger X-am Pump (please contact Dräger for availability)
	Hoses of various lengths
	Probes of various types

Dräger Bump Test Station

Dräger X-dock

Dräger X-am Pump

Nonane tester

Probe GP 600

Charging adapter

Charging module

Dräger X-am 2500/5000/5600

Dräger offers a complete product series for the simultaneous measurement of different gases. The Dräger X-am 2500/5000/5600 family is the proven instrument generation of Dräger's gas detection technology. Its practical design, cell-phone size, low weight, and the long-life of the sensors make this family the perfect companion for personal monitoring. Combined with an optional external pump and hose or probe, they are perfect for confined space entry measurements. The Dräger X-zone 5500 extends the application of these instruments to innovative area monitoring instruments with various application possibilities (does not apply to X-am 2500).

OTHER BENEFITS

Robust: water and dust protection compliant with IP 67

Reliable gas inlets from both sides

Precise, vapor-sensitive Ex monitoring

Ideal solution for functional testing and calibration

(automatic testing and calibration station - Dräger X-dock & Dräger Bump Test Station)

Personal monitoring

Confined space entry

Leak detection Area Monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Durable, IP 67	
Confined space entry	High level of flexibility using external pump (with 45	
	m or 148 ft. tube), adaptable to various probes	
Leak detection	Catalytic sensors and XXS sensors respond quickly	
Area Monitoring	Wireless fenceline, available for use in Zone 0	

An optional external pump, which can be operated using a hose of up to 45 meters (148 ft.) long, is an ideal solution for applications involving the confined space entry measurements in tanks, pipelines, etc. When the instrument is connected to the cradle, the pump automatically starts. The daily bump test of the instruments is easier and more comfortable than ever before: With the Dräger Bump Test Station no power is necessary and the instruments can be tested

The Dräger X-dock offers complete comfort, easy operation and central documentation and all with reduced gas consumption. Thus, Dräger's test stations support safety on the highest level and this is time and cost-effectively.

TECHNICAL SPECIFICATIONS

fast and easily.

Dimensions (W × H × D)	47 × 129 × 31 mm; 1.8 x 5.1 x 1.2 in.
Weight	220 g; 8.8 oz.
Ambient conditions:	
Temperature	-20 to +50°C; -4 to +122°F
	15 minutes to -40°C; -40°F
Pressure	700 to 1,300 hPa
Humidity	10 to 95% r.h.
Ingress protection	IP 67
Alarms:	
Visual	180°
Acoustic	Multi-tone > 90 dB in 30 cm (1 ft.)
Vibration	yes
Power supply	Alkaline, rechargeable NiMH for alkaline pack,
	T4 rechargeable battery pack
Operating period (h)	approx. 10
Charging time (h)	< 4
Pump mode	Maximum hose length 45 m; 148 ft.
(Dräger X-am Pump)	

Dräger X-am 2500/5000/5600

FEATURES COMPARISON

Compatible sensors	Dräger X-am 2500	Dräger X-am 5000	Dräger X-am 5600
	Flexible 1 to 4 sensors.	Flexible 1 to 4 sensors.	Flexible 1 to 4 sensors.
	One catalytic sensor	One catalytic sensor and 3 XXS EC sensors	One IR sensor and 3 XXS EC sensors
	and XXS EC sensors (see XXS EC sensors)	(see XXS EC sensors)	(see XXS EC sensors)
XXS EC sensors	$-\frac{(See XAS LC Sellsols)}{O_2, CO, H_2S, SO_2 and}$	Amine, O ₂ , O ₂ PR,	Amine, O ₂ , O ₂ PR,
AAS LC Selisois	NO ₂	O ₂ 100, CO, CO LC,	O ₂ 100, CO, CO LC,
		COCL ₂ , CO HC, H ₂ S,	COCL ₂ , CO HC, H ₂ S,
		H ₂ S LC, H ₂ S HC, HCN	H ₂ S LC, H ₂ S HC, CO ₂ ,
		PC, CO ₂ , Cl ₂ , HCN,	Cl ₂ , HCN, HCN PC, NH ₃ ,
		NH ₃ , NO, NO ₂ , NO ₂ LC,	NO, NO ₂ , NO ₂ LC, PH ₃ ,
		PH ₃ , PH ₃ HC, SO ₂ , OV,	PH ₃ HC, SO ₂ , OV, OV-A,
		OV-A, H ₂ S/CO, CO H ₂	H ₂ S/CO, CO H ₂ (com-
		(compensated), H ₂ , H ₂	pensated), H ₂ , H ₂
		HC, Odorant, O _{3,} O ₂ /CO-	
		LC, H ₂ S-LC/CO-LC, O ₂ /	CO-LC, H ₂ S-LC/CO-LC,
Catalytic sensors		H ₂ S LC	O ₂ /H ₂ S LC
Cat Ex 125 PR	0–100% LEL	0-100% LEL	-
Out 2x 120 1 10	0-5 Vol% CH ₄	0-100 Vol% CH ₄	
	·	Special calibration	
		for organic vapors is	
		possible	
Cat Ex 125 Mining PR	0-100% LEL	0-100% LEL	
	0-100 Vol% CH4	0-100 Vol% CH ₄	0.4000/ 1.51
Infrared sensors	_		0-100% LEL
IR Ex			0-100 Vol% CH ₄ / C ₄ H ₁₀ /C ₂ H ₄ /LPG
IR CO ₂	_		0-5 Vol% CO ₂
IR CO ₂ /Ex	_		0-100% LEL
			0-100 Vol% CH ₄ /
			C ₄ H ₁₀ /C ₂ H ₄ /LPG
	_		0-5 Vol% CO ₂
Data logger	Can be read out via	Can be read out via	Can be read out via
	Infrared > 1000 hours	Infrared > 1000 hours	Infrared > 1000 hours
	with 4 gases and a	with 5 gases and a	with 6 gases and a
	recording interval of 1 value per minute	recording interval of 1 value per minute	recording interval of 1 value per minute
Approvals:	value per minute	value per minute	value per minute
ATEX	II 1G Ex da ia IIC T4/	II 1G Ex da ia IIC T4/	II 1G Ex ia IIC T4/
	T3 Ga	T3 Ga	T3 Ga
	I M1 Ex da ia I Ma	I M1 Ex da ia I Ma	I M1 Ex ia I Ma
Measurement performance	for O ₂ according to EN	for O ₂ according to EN	for O ₂ according to EN
certificate	50104/CO and H ₂ S	50104/CO and H ₂ S	50104/CO and H ₂ S
	according to EN	according to EN	according to EN
	45544/Methane to	45544/Methane to	45544/Methane,
	Nonane according to EN 60079 and EN	Nonane according to EN 60079 and EN	Propane, Nonane and H ₂ (mit XXS H ₂ HC)
	50271	50271	and also CO ₂ according
	00211	00271	to EN 60079 and EN
			50271
c CSA u	Div.1, Class I, Groups	Div.1, Class I, Groups	Div.1, Class I, Groups
	A,B,C,D T4/T3	A,B,C,D T4/T3	A,B,C,D T4/T3
	Class II, Groups E,F,G	Class II, Groups E,F,G	
	A/Ex da ia IIC T4/T3/Gb	A/Ex da ia IIC T4/T3/Gb	A/Ex ia IIC T4/T3/Ga

FEATURES COMPARISON

IECEx	Dräger X-am 2500	Dräger X-am 5000	Dräger X-am 5600
	Ex da ia I Ma	Ex da ia I Ma	Ex ia I Ma
	Ex da ia IIC T4/T3 Ga	Ex da ia IIC T4/T3	Ex ia IIC T4/T3 Ga
CE mark	Electromagnetic	Electromagnetic	Electromagnetic
	compatibility (Directive	compatibility (Directive	compatibility (Directive
	2014/30/EU) ATEX	2014/30/EU) ATEX	2014/30/EU) ATEX
	(Directive 94/9 EC)	(Directive 94/9 EC)	(Directive 94/9 EC)
MED	2014/90/EU	2014/90/EU	2014/90/EU
MSHA	according the	according the	_
	requirement "Title 30	requirement "Title 30	
	Code of Federal Regu-	Code of Federal Regu-	
	lations, Part 22 for use	lations, Part 22 for use	
	in gassy underground	in gassy underground	
	mines"	mines"	
EAC Ex	PO Ex ia I X / 0 Ex ia IIC	PO Ex ia I X / 0 Ex ia IIC	PO Ex ia 1X / 0 Ex ia
	T3 X oder PB Ex d ia I X/	T3 X oder PB Ex d ia I	IIC T4/T3 X
	1 Ex d ia IIC T4/T3 X	X/1 Ex d ia IIC T4/T3 X	

ACCESSORIES

General accessories	Charging module
	Car charging connection cable 12V/24V
Calibration accessories	Dräger Bump Test Station
	Dräger X-dock
	Dräger CC-Vision Basic, free of charge on www
	draeger.com
	Nonane tester (for function tests)
Pump accessories	Dräger X-am Pump
	Hoses of various lengths
	Probes
Area Monitoring	Dräger X-zone 5500/5800
	(for Dräger X-am 5000/5100/5600)

Dräger Bump Test Station

Dräger X-dock 5300 Dräger X-am 125

Dräger X-am Pump

Nonane tester

Dräger X-zone 5500

D-23594-2009

Dräger X-Zone 5500/5800

State-of-the-art area monitoring - in combination with the gas detectors Dräger X-am 5000, 5100 and 5600 the Dräger X-zone 5500 and X-zone 5800 are suitable for the measurement of one to six gases. The easy transportable, robust and waterproof X-zone expands the mobile gas detection to a unique system with various different application possibilities.

OTHER BENEFITS

IP 67 and Zone 0 approval for industrial applications

Wireless communication of X-zone's for frequencie: 868 MHz, 915 MHz, 433 Mhz and 430 MHz

Robust and trouble-free connection up to 100m between two X-zone

Robust and simple to be used induction wireless charging technology available

PowerOff-function: via the potential-free alarm contact external equipment can be switched off during an alarm occur.

Permanent power supply of the X-zone 5800 in explosion-proof areas by means of Power Supply Ex

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area Monitoring	Up to 25 Dräger X-zone 5500/5800 can be
	automatically interconnected to form a wireless
	fenceline. This allows a continuous monitoring of
	larger areas, e.g. pipelines or industrial tanks during
	industrial shut downs, up to 120 hours.
Confined space entry	An optional intergrated pump allows the continuous
	monitoring of confined space entry or locations
	which are difficult to access, for a distance of up
	to 45 m.

The Dräger X-zone 5500/5800 transforms the Dräger personal gas detection instruments Dräger X-am 5000/5100/5600 into innovative area monitoring devices for a wide range of applications. A patented solution for more safety.

With the flexible sensor equipping of the Dräger X-am 5000, X-am 5100 and X-am 5600 the fields of application of the Dräger X-zone 5500/5800 are manifold. Just insert a different Dräger X-am 5x00, which is equipped with an alternative sensor setup, and the Dräger X-zone 5500/5800 is ready for a different application. The modern induction charger is simple to use, comfortable and has no issues with dirty charging contacts, so the device is easy to maintain. The Dräger X-zone 5500/5800 affords a new portable safety concept. Up to 25 Dräger X-zones can be automatically interconnected to form a wireless fenceline. This interconnection of the area monitoring devices allows the rapid safeguarding of larger areas, e.g. of pipelines or industrial tanks during industrial shutdowns. In the event of a gas alarm, the device transmits the alarm signal to all units that are part of the fenceline, which then signal a daughter alarm. The daughter alarm is, in contrast to the red master alarm, displayed green/red by the illuminated LED ring, thus allowing and providing a fast and easy recognition of the alarm itself as well as of the alarm-trigging devices. With the 360° alarm signalization, the acoustic and optical alarm can be recognized from all sides. This ensures an easy and clear evacuation alarm and alerting.

With the help of a potential-free alarm contact on the Dräger X-zone 5500/5800 external devices such as horns, lamps or traffic lights can be switched. Alternatively, the signal from the alarm chain can be forwarded to a variety of evaluation devices via the Modbus interface. The X-zone Com enables wireless access to the data of the Dräger X-zone 5500/5800 via the GSM network. Status queries and alarms via SMS, periodical sending of data via e-mail or presentation in a cloud service - the X-zone Com sends all relevant data such as gas name, gas

type, gas concentration, alarms and faults directly to the device of your choice.

The X-zone Com is designed to be easily commissioned with minimal installation effort.

As an alternative to these solutions, it is also possible to pass the Modbus signals of the Dräger X-zone 5500/5800 directly to a control room. By this a direct connection to a PLC can be realized.

TECHNICAL SPECIFICATIONS

TEOTHTOAL OF LOW TOATTONS		
Dimensions (W × H × D)	490 x 300 x 300 mm; 20 x 12 x 12 in	
Weight	10 kg; 353 oz. (24 Ah battery)	
Ambient conditions:		
Temperature	-20 to +50; -4 to +122°F	
Pressure	700 to 1,300 hPa	
Humidity	10 to 95 % r.h.	
Ingress protection	IP 67	
Alarms:		
Visual	360° LED (illuminated ring)	
Acoustic	multi-tone: > 108 in 1m (3.3 ft.)	
	> 120 in 30 cm (1 ft.)	
Alarm output	Potential-free alarm contact for intrinsically safe	
	circuits (6 pole); < 20 V to 0.25 A (0.15 A	
	constant current); resistive load	
Radio transmission	Worldwide licencse-free ISM frequencies	
	Digital radio, robust and interference-free trans-	
	mission up to 100 m.	
RF approval	868 MHz (EU, Norway, Switzerland, Turkey,	
	South Africa, Singapore)	
	915 MHz (USA, Canada, India, Australia),	
	922 MHz (Japan),	
	433 MHz (Russia, Malaysia)	
Power supply	Pb-Akku	
Operation period	Up to 120 h with a fully equipped	
	Dräger X-am 5000/5600, up to 400 h with	
	tox sensors and 30 minutes alarm per day	
Charging period	< 14 h, flexilbe power supply;	
	External 100 - 240V charger (worldwide) or	
	inductive wireless charging	
Pump mode	internal pump / hose length: max 45 m	
Approval		
ATEX	I M1 Ex ia I Ma	
	II 1G Ex ia IIC T3 Ga	
	II 2G Ex ia d IIC T4 Gb	
c CSA us	Class I, Zone 0, AEx ia IIC T3 Ga	
	Class I, Zone 1, AEx ia d IIC T4 Gb	
IECEx	Ex ia I Ma	
	Ex ia IIC T3 Ga	
	Ex ia d IIC T4 Gb	
CE-mark	Electromagnetic compatibility	
	(Directive 2014/30/EU) /	
	R&TTE (Directive 99/005/EG)	
	ATEX (Directive 94/9 EC)	

ACCESSORIES

General accessories	Inductive charger	
	Plug-in charger	
	Pb-battery (24 Ah)	
	Socket, 30 cm high; for measurement of light gases	
	Alarm damper, for use within bump tests	
	X-zone Com, Power Supply Ex, Holder X-am 5100	
Calibration accessories	Bump Test adapter for function tests	
	Cover plate with diffusion adapter	
	Communication accessories:	
	Dräger CC-Vision Basic, free of charge on www.	
	draeger.com	
	USB DIRA with USB cable	
Pump accessories	cover plate with pump adapter	
	different measuring probes	
	extension hose, different lenght	

Inductive charger
Allowing easy charging

Set pump cover

Cover plate
With diffusion adapter

Set holder Dräger X-am 5100

Calibration and commu-nication accessory USB DIRA with USB cable

Alarm damper For use within bump tests

Base for measurement of light gases

Power Supply Ex

Dräger X-am 7000

Sale discontinued

Multi-purpose: the Dräger X-am 7000 is the innovative solution for the simultaneous and continuous measurement of up to five gases. A combination of more than 25 sensors allows flexible solutions to individual monitoring tasks. The X-am 7000 can be equipped with three electrochemical and two infrared, catalytic bead sensors or photo ionization sensors. It is the ideal companion in a variety of applications where the reliable detection of oxygen, toxic and combustible gases and vapors is necessary.

OTHER BENEFITS

Integrated water- and dust-filter, and immersion-proof, as defined in IP 67

Clearly structured, scratch-resistant display

Very loud acoustic multi-tone alarm and 360° all-round visual alarm

Intelligent charge management

Intuitive software functions

Confined space entry

Leak detection

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area monitoring	Durable, IP 67
Confined space entry	Built-in high-performance pump makes it possible to
	sample gas using a hose up to 45 m/150 ft. long.
Leak detection	Extensive portfolio of over 25 different
	DrägerSensors enables the detection of more than
	100 gases and vapors.

Smart CatEx PR sensors enable the detection of flammable gases and vapors, and can be calibrated to as many as five different sensitivity levels. The unit can be switched automatically from % LEL to 100 Vol.-% in full-range mode. Leakages are reliably detected, visually in bar-graph mode and audibly in tracking mode.

The PID sensor detects organic vapors in very low concentrations. An integrated library of 20 substances, three user-adaptable channels, and an easy switch to leak detection mode makes the instrument flexible enough to met your specific needs.

With the help of Dräger CC-Vision Basic software, up to 5 different detection applications can be saved within the instrument. By doing so, the use of different instrument configurations can be set for that specific application. During operation, a simple change between these set parameters can be done via the instrument's menu.

In addition to the electrochemical sensors, the catalytic and infrared sensors are automatically recognized by the instrument upon insertion. All sensors are pre-calibrated, and therefore a reconfiguration of the Dräger X-am 7000 can be done by simply changing the sensor. No additional service or maintenance is necessary.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	150 × 140 × 75 mm; 5.9 x 5.6 x 3 in.	
Weight	600 g; 21 oz. (basic unit)	
weight	490 g; 17 oz. (rechargeable battery 3.0 Ah)	
	730 g; 26 oz. (rechargeable battery 6.0 Ah)	
Ambient conditions:	700 g, 20 02. (rechargeable battery 0.0 All)	
Temperature	-20 to +55 °C, short-term, -40 to +60 °C,	
Temperature	-5 to + 130 °F, short-term -40 to +140 °F	
Pressure	700 to 1,300 hPa	
Humidity	10 to 95% r.h.	
	IP 67	
Ingress protection Alarms:	IF 07	
Visual	360°	
Acoustic	Multi-tone > 100 dB in 30 cm (1 ft.)	
Vibration		
	No Alkalina yaahaygaahla NiMU	
Power supply	Alkaline, rechargeable NiMH Alkaline: > 20	
Battery life (h)		
	NiMH: > 9 (4.8 V/3.0 Ah)	
	> 20 (4.8 V/6.0 Ah)	
	(complete with all sensors and 20 % of the time in	
	pumped mode)	
Charging time (h)	3.5 to 7, dependent on battery type	
Data logger	100 h	
Pump mode	Maximum hose length of 45 m (150 ft.)	
Approvals:		
ATEX	II 2G Ex d ia IIC T4 Gb; -20 ≤ Ta ≤ + 60 °C	
	I M2 Ex d ia I Mb	
Measurement performance certificate	for Methane, Propane and Nonane according to	
	EN 60079-29-1	
UL	Class I Div. 1 Group A, B, C, D, Temp. Code T4	
	$-20 \le Ta \le + 60 ^{\circ}C \text{ (NiMH)};$	
	-20 ≤ Ta ≤ +40 °C (Alkaline)	
CSA	Class I Div. 1 Group A, B, C, D, Temp. Code T4	
	$-20 \le Ta \le + 60 ^{\circ}C \text{ (NiMH)};$	
	_20 ≤ Ta ≤ +40 °C (Alkaline)	
IECEx	Ex d ia I/IIC T4; -20 ≤ Ta ≤ + 60 °C	
MED	MED 96/98/EC	
CE mark	Electromagnetic compatibility	
	(Directive 2014/30/EU)	
	ATEX (Directive 94/9EC)	

ACCESSORIES

General accessories	Charging module	
	Power supply for charging module	
	Power supply for vehicles	
	Car mounting kit	
Calibration accessories	Dräger Bump Test Station	
	Dräger E-Cal	
	Communication accessories:	
	Dräger CC-Vision Basic, free of charge on www.	
	draeger.com	
	Printer Set for Dräger Bump Test Station	
Pump accessories	Pump adapter	
	Pump membrane set	
	Probes	
	Hoses	

Dräger Bump Test Station Dräger E-Cal

Pump adapter

Charging module

Dräger X-am 3500/8000

J-6521-2017

0-410-2018

The Dräger X-am 3500/8000 family are advanced gas detection devices with an integrated, powerful pump for simultaneous and continuous monitoring of up to four gases in the Dräger X-am 3500 and up to seven gases in the X-am 8000. The devices are optimized for professional clearance measurements before entry and work in confined spaces and containers, as well as for the search of gas leaks. The X-am 8000's five sensor slots and an extensive number of different sensors (including various dual sensors for measuring two gases with just one slot) ensure a flexible adaptation to individual measurement tasks. An infrared sensor or photoionization detector can be plugged in one slot in the X-am 8000, and an infrared sensor or catalytic heat tone sensor in another slot. Both instruments have three slots for electrochemical sensors in XXS format for the measurement of oxygen and toxic gases.

Despite the diverse performance capabilities of the devices, their operation is very simple and sets new standards. In particular, the color display, the operation with three large buttons and the flexible switching between diffusion and pump operation during use contribute to this.

OTHER BENEFITS

Built-in high performance pump allowing a measurement with a hose up to 45 m

Inductive charging of the power supply

Use in Ex Zone 0, temperature class T4 in every assembly version

High performance catalytic bead and infrared sensors and photoionization sensors (only in Dräger X-am 8000) with low detection limits

Wizards for different measurement tasks:

- Confined space entry measurements: Calculation of the necessary hose flooding time depending on the probe length, set measurement gas and temperature limit
- Leak search: visual and audible display of the gas concentration
- Use of pre-tubes with the PID sensor: benzene-selective measurement

Event report including impact detection

Optional Bluetooth® module for X-am 8000 to connect to the GDC App for Android and iOS

Leak detection

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Confined space entry:	Wizard for confined space entry measurements, build-	
Commed space enay.	in, high performance pump, extensive probe portfolio	
Leak detection:	Wizard for leak detection, extensive assortment of	
	DrägerSensors for the measurement of > 100	
	different gases	
Area monitoring:	IP68, accessory: base for placing the instrument	
	upright, particularly loud horn (100 dB @ 30 cm/1 ft.)	

A Bluetooth® module enables the x-am 8000 to communicate with other systems and exchange data. This saves time and helps to manage the measurement tasks more efficiently.

An additional useful tool is the **Mobile Solution (Android App and Cloud)**, specially designed for the X-am 8000. It allows, for example, the readout of measurement values away from the point of sampling on the smartphone and thus support particularly confined space entry measurements. You also can easily and conveniently use the app to create and administrate measurement reports.

To measure hard-to-detect hydrocarbons, you can fit the Dräger X-am 8000 with one of two high-performance PID sensors. Two different types are available: The PID HC covers a measurement range of 0 to 2,000 ppm (isobutylene). The PID LC ppb is particularly suited for a measurement range of 0 to 10 ppm (isobutylene) with a low resolution in the range below 1 ppm.

For benzene-specific measurements, the X-am 8000 can be used with a pre-tube. The advantage: you only need one measuring device for this application, which significantly reduces the costs of purchasing, maintaining and transporting devices in use. A built-in assistant supports the use of the pre-tubes.

TECHNICAL SPECIFICATIONS

TECHNICAL SI ECH ICATIONS		
Dimension (W x H x D) (mm)	Approx. 179 x 77 x 42 mm; 70 x 30 x 16 in.	
Weight (g)	Approx.495 g, depending on sensor selection,	
	without transport belt, without pump	
	Approx. 550 g, depending on sensor selection,	
	without transport belt, with pump	
Ambient conditions:		
Temperature	-20 to +50 °C; -4 to +122 °F	
Pressure (hPa)	700 to 1300	
	800 to 1,100 hPa (use in potentially explosive areas)	
Humidity (% r.h.)	10 to 90 % (to 95 % intermittent)	
Ingress protection	IP68	
Display	High-contrast colour display	
Alarms:		
Visual	3 LEDs >red< (gas alarms)	
	3 LEDs >yellow< (instrument alarms)	
Acoustic (dB)	Multi-tone typical 100 dB (A) at a distance of	
	30 cm (1 ft.)	
Vibration	Yes	
Power supply	Lithium ion battery pack, inductively rechargeable	
Operation time (h) diffusion	Typical 24 h [®] (equipped with CatEx and 3 EC	
	sensors)	
Charging time (h)	Typical 4 h after use for one shift, maximum 10 h	
Data logger	12 MB, e.g. 10 minutes per hour gas exposition	
	with changing measurement values every second	
	on all 7 channels = 210 h	
Pump mode	Maximum hose length 45 m	

¹⁾ Nominal runtime of the gas detector at ambient conditions 20 to 25 °C, 1013 hPa, less than 1 % of the time alarming, display energy save mode activated. The actual runtime varies by the ambient temperature and pressure, battery and alarm conditions.

FEATURES

Dräger X-am 3500	Dräger X-am 8000
1 - 4 sensors,	Flexible 1 – 5 sensors,
Slot 1: not used	Slot 1: PID or IR sensor
Slot 2: CatEx sensor	Slot 2: IR or CatEx sensor
Slot 3 - 5: electrochemical	Slot 3 - 5: electrochemical
sensors XXS design	sensors XXS design
O ₂ , CO LC, H ₂ S LC, NO ₂ , SO ₂	Amine, O ₂ , O ₂ PR, O ₂ 100, CO LC,
	CO HC, COCl ₂ , H ₂ S LC, H ₂ S HC,
	CO ₂ , Cl ₂ , HCN, HCN PC, NH ₃ ,
	NO, NO ₂ , NO ₂ LC, Ozon, PH ₃ , PH ₃
	HC, SO ₂ , OV, OV-A, H ₂ S/CO, CO
	H ₂ -CP (H ₂ compensated), H ₂ , H ₂
	HC, Odorant, O ₂ /CO-LC, H ₂ S-LC/
	CO-LC, O ₂ /H ₂ S LC
	1 – 4 sensors, Slot 1: not used Slot 2: CatEx sensor Slot 3 – 5: electrochemical sensors XXS design

FEATURES

	Dräger X-am 3500	Dräger X-am 8000
Catalytic bead sensors		
CatEx 125 PR	0 – 100 % LEL	0 – 100 % LEL
	0 - 100 Vol% CH ₄ : Special	0 - 100 Vol% CH ₄ : optional auto-
	calibration for organic vapours	matic measurement range switch,
	possible	Special calibration for organic va-
		pours possible
CatEx 125 PR Gas	not possible	$0 - 100 \%$ UEG für CH_4 , C_2H_6 ,
		$C_2H_4,\ C_2H_2,\ C_3H_8,\ C_3H_6,\ C_4H_{10},$
		H ₂
		0 - 100 Vol% CH ₄ : optional
	_	automatic measurement range switch
Infrared sensors	_	
IR Ex ES	not possible	0 – 100 % LEL
		0 – 100 Vol% CH ₄ /C ₄ H ₁₀ /
		C ₂ H ₄ /LPG
IR CO ₂ ES	not possible	0 – 5 Vol% CO ₂
IR Ex/CO ₂ ES	not possible	0 – 100 % LEL
		0 – 100 Vol% CH ₄ /C ₄ H10/
		C ₂ H ₄ /LPG
ID F ₁₁ /CO LIC	not possible	0 – 5 Vol% CO ₂ 0 – 100 % LEL
IR Ex/CO ₂ HC	not possible	0 - 100 % LEL 0 - 100 Vol% CH ₄ /C ₄ H10/
		C ₂ H ₄ /LPG
		0 – 100 Vol% CO ₂
PID Sensoren	_	0 100 Vol. 70 CC2
PID HC	not possible	0 – 2,000 ppm Isobutylene
PID LC ppb	not possible	0.03 – 10 ppm Isobutylene
Approvals		
CE mark	Electromagnetic compatibility	Electromagnetic compatibility
	(Directive 2014/30/EU)	(Directive 2014/30/EU)
	ATEX (Directive 2014/34/EU)	ATEX (Directive 2014/34/EU)
ATEX/IEC Ex	I M1, II 1G	I M1, II 1G
	Ex da ia I Ma, Ex da ia IIC T4 Ga	Ex da ia I Ma, Ex da ia IIC T4 Ga
	Zone 0, T4	Zone 0, T4
Measurement performance	for O ₂ accord. EN 50104/	for O ₂ accord. EN 50104/
certificate	for CO and H ₂ S accord. EN	for CO and H ₂ S accord. EN
	45544/Methane to Nonane*	45544/Methane to Nonane*
	accord. EN 60079-29-1 and EN	accord. EN 60079-29-1 and EN
	50271:2010	50271:2010
Marine Approval	DNV GL accord. Directive 2014/90/	DNV GL accord. Directive 2014/90/
	EU (MED)	EU (MED)
c CSA us	Class I, Zone 0, A/Ex da ia IIC T4 Ga	Class I, Zone 0, A/Ex da ia IIC T4 Ga
	Class II, Div. 1, Groups E, F and G	Class II, Div. 1, Groups E, F and G
EAC Ex	PO Ex da ia I Ma X	PO Ex da ia I Ma X
	0Ex da ia IIC T4 Ga X	0Ex da ia IIC T4 Ga X

^{*} Nonane-suitable pump adapter required.

ACCESSORIES

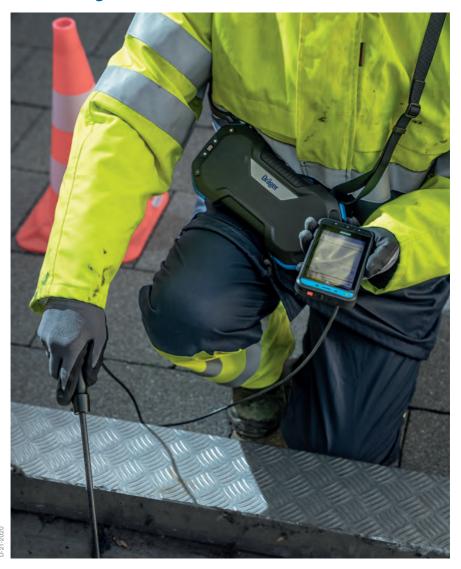
Charging module for inductive charging of the instrument
monamon.
Power supply for vehicles 12V/24V
Dräger X-dock, Nonane tester
Dräger CC-Vision Basic, free of charge on
www.draeger.com
Pump adapter and nonane-specific pump adapter
Base to place the instrument upright for the area
monitoring
PID benzene pre-tube

Dräger X-am 8000 with base

Inductive power supply

Holder for labels

Pump adapter



Nonane-specific pump adapter

Calibration adapter

3.10 Multi-gas scanner

The Dräger X-pid 9500 detects volatile organic substances such as benzene even at the lowest concentrations. To determine the concentration of certain hazardous substances, the device combines two measuring modes and thus optimally supports measuring strategies for clearing hazardous areas or confined spaces. The "Seeker" measuring mode determines the total concentration of volatile organic hydrocarbons in the ambient air in a broadband measurement. In "Analysis" mode, the instrument selectively and precisely measures target substances that the user selects in advance.

Seeker mode: Broadband measurement for pre-tests and localization of measuring points

The Seeker mode is used to continuously measure the total concentration of several volatile organic compounds in the ambient air at the workplace and in potentially explosive atmosphere. The measurement mode Seeker displays a VOC sum signal and is comparable to single gas PID measuring devices.

Analysis mode: Selective measurement for monitoring carcinogenic substances

The analysis mode is used to measure the concentration of individual preset hazardous substances, so-called target substances, in the ambient air at the workplace and in potentially explosive atmospheres. Individual response factors of the target substances are considered and thus an exact concentration is determined in a few seconds.

The »Analysis« measurement mode is comparable to gas chromatography laboratory analyses. For carcinogenic vapors such as benzene, compliance with the time-weighted average in the range from a few ppb to ppm is prescribed. The Dräger X-pid 9500 is optimized for measurements in this concentration range and can measure benzene from 50 ppb.

Dräger X-pid 9500

The selective PID gas measurement device is ideal for users who frequently test for hazardous toxic substances. Benzene, butadiene and other volatile organic compounds (VOCs) are carcinogenic even in the smallest concentrations. Selective measurement is necessary because other gases and vapors are often also present. The gas measurement device allows for short test times and laboratory-quality results.

OTHER BENEFITS

Target substance database expandable by the customer

Lower operating costs by dispensing with consumables

High selectivity and low detection limits for more safety by separating gas mixtures into individual substances

Robust behavior under all conditions due to reduction of environmental influences

Easy operation via ex-protected smartphone via mobile app

Measurement results in laboratory quality

Simple function test and easy calibration

Use in explosion-proof areas

Entry into confined spaces/clearance measuring

Exposition measurement

ESPCIALLY SUITED FOR THE FOLLOWING APPLICATIONS AND THEIR USP'S

Confined space entry:	Selective detection of benzene or butadiene
Exposition measurements:	Precise monitoring of e.g. benzene loads without
	cross-sensitivities
Emission measurements:	Detection of known hazards in the vicinity of
	chemical plants or factories
Exploratory measurements:	Detection of over 40 substances in short measuring
	times and without consumables

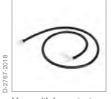
SOFTWARE CONNECTION

The GasVision 7 software is a Windows-based software which allows a professionally visualization and evaluation of Dräger X-pid's data logger. It is also possible to create an Excel-based export for further processing.

The Dräger CSE Connect software solution digitizes the exchange of information in the clearance measurement process. The data transfer between the smartphone app and the web application takes place via a cloud connection. The Dräger X-pid 9500 communicates directly with the app. This helps you to manage your measurement tasks safely and cost-effectively.

TECHNICAL DATA (refer exclusively to the Dräger X-pid® 9500 sensor unit)

Dimensions (W x H x D) (mm)	approx. 132 x 281 x 56 mm
Weight (g)	арргох. 880 g
Ambient conditions:	
Temperature (°C)	-10 to +35
Pressure (mbar)	700 to 1.300
Humidity (% r.h.)	10 to 95 %
Ingress protection	IP54 (sensor unit)
	IP64 (control unit - ecom Smart-Ex)
Warm-up phase	approx. 10 min
	May extend at low ambient temperatures.
Operation time	Typical 8 h
	Decreases at low ambient temperatures.
Sensor	10.6 eV PID (Analysis-PID) after separation by a
	gas chromatograph
	Sensitive for all substances with < 10.6 eV ioniza-
	tion energy and a boiling temperature < 150 °C

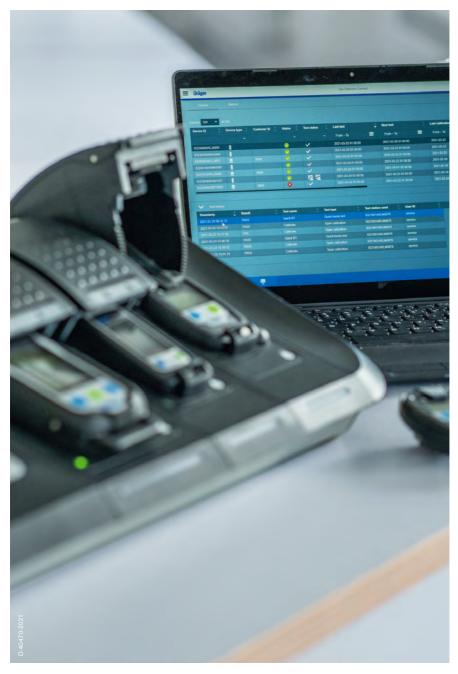

	X-pid 9500
PID	0 - 100 ppm isobutylene
Approvals	
CE mark	Electromagnetic compatibility
	(Directive 2014/30/EU)
	ATEX (Directive 2014/34/EU)
	Funk (Directive 2014/53/EU)
	RoHS 3 (Directive 2015/863/EU)
ATEX	II 1G Ex ia IIC T4 Ga (Sensoreinheit)
	II 2G Ex ib IIC T4 Gb (Bedieneinheit)
	Zone 0 (Sensoreinheit)
	Zone 1 (Bedieneinheit)
IECEx	Ex ia IIC T4 Ga (Sensoreinheit)
	Ex ib IIC T4 Gb (Bedieneinheit)

ACCESSORIES

Cases	Sturdy case with an inlay specially tailored to the
	X-pid with space for the control and sensor unit
	with respective chargers as well as for a test gas
	cylinder and other accessories.
Calibration accessories	Dräger X-pid® 9500 bump test adapter
	Test gas benzene or isobutylene-toluene
Hoses and probes	Float probe
	Tygon hose with PTFE
	Telescopic probe ES 150

Case with inlay for X-pid

Hose with bump test adapter


Float probe

Test gases

D-0494-2018

4 Software solutions

Dräger Gas Detection Connect

4.1 Dräger Gas Detection Connect

Gas Detection Connect - Live Monitoring

Gas Detection Connect (GDC for short) is an innovative cloud-based software solution that networks individual gas detection devices. As the future system of gas measurement technology, GDC aims to make the industrial world safer and more efficient.

In addition to live information about alarms directly from the field, certificates and status information from our X-dock test station as well as those of the gas detection devices can be viewed at any time. GDC consists of a cloud backend based on Microsoft Azure and is hosted in the EU. This cloud backend allows to centrally collect, store, and provide data from different locations. The data is then made available to the customer via the web application.

This means no installation and maintenance of the software at the customers site - access is via a secure log-in to the GDC website in a browser. With a firmware update and in a few steps, the X-dock can be connected directly to GDC's cloud backend, thus automating the sending of all test data and information to the software solution. The path from GDC to the station and into the inserted devices was also realized with the first devices. This makes device management (asset management), such as tracking the test status or firmware updates, significantly easier and more efficient.

Sending live data such as alarms and displaying them on a map with location is also part of GDC (Live Monitoring). The Bluetooth-enabled Pac 6500, 8000 and 8500, as well as the X-am 2800 can connect to the GDC app via Bluetooth to send data to the cloud backend. Alarms are directly displayed, forwarded, and documented for future purposes such as analyzes or safety concepts. GDCs user-friendly interface allows a quick overview and easy compilation of reports, which can also be sent automatically.

GDC is a software solution that is continuously being developed step by step. Further devices of the mobile as well as stationary gas measurement technology will be integrated into GDC in the future.

4.2 Dräger CSE Connect

CSE Connect and X-am 8000

The Dräger CSE Connect software solution digitizes the exchange of information in the clearance measurement process (confined space entry). The data transfer between the smartphone app and the web application takes place via a cloud connection based on Microsoft Azure. The Dräger X-am® 8000 and the control unit of the Dräger X-pid communicate directly with the smartphone app. This helps our customers to plan, perform and document the measurement tasks more efficiently.

The cloud backend makes it possible to centrally collect the relevant data for the clearance measurement process from a wide variety of locations. These are then made available for evaluation directly in the web application by simply logging into the secure CSE Connect website. Thus, the data is not only made available faster in the clearance measurement process, but also more data is documented than in the paper-based process. In addition to the digital data from the X-am 8000 and X-pid such as measured values, measurement duration and device data, measured values can also be entered manually and QR codes can be scanned to clearly identify the measurement location.

4.3 Dräger X-dock Manager

X-am 2800 with X-dock Manager

The X-dock Manager is a PC-based (on-premises) fleet management software for the Dräger X-dock system. It provides information on the operational readiness of existing portable Dräger gas detectors, announces service intervals and documents the performance of the tests including test and calibration results.

By networking individual X-dock stations and centrally storing your data in the database provided by the X-dock Manager, all data is always available. In addition, the X-dock Manager provides supporting functions in device assignment and user management, as well as detailed reports on alarms and events that occurred during operation.

4.4 Dräger CC-Vision Basic

CC stands for calibration and configuration. It describes the two main functions of this PC software. This software ensures the professional configuration and calibration of Dräger gas detectors as well as the documentation of the results.

Whether alarm thresholds, switch-off behaviour, or measuring and calibration gas, CC-Vision Basic helps you configure your gas detectors, even if you want to duplicate configurations and transfer them to other devices.

The device functions are clearly displayed on the screen in a tree structure and allow to set the device parameters quickly and individually and to calibrate the sensors.

Anyone who has purchased a Dräger X-dock and the X-dock Manager will naturally want to use them to manage all of their devices. CC-Vision Basic does not contradict this. The CC-Vision Basic sets the parameters of individual devices, while the X-dock sets the parameters of entire groups of devices based on the specifications provided by the CC-Vision Basic.

The Dräger X-dock and the Dräger CC-Vision Basic work in perfect symbiosis to provide even better support for your processes.

Test it for yourself and download CC-Vision Basic free of charge from: www.draeger.com/software

4.5 Dräger GasVision

The gas detector's data logger provides a wealth of information - but the trick is to find the relevant information and process the data accordingly.

This is where the Dräger GasVision software provides support. The data logger provides both a graphic AND tabular display to conveniently navigate through the data.

- · Zoom into certain areas to look at these in detail
- Display the TWA, average value, MAX and MIN values for marked areas
- Export data to Excel
- · Directly display the measured data of a connected device

This visualisation of the data allows hazardous situations to be detected and appropriate measures to be introduced.

4.6 New Datalogger concept (from 2021)

With the introduction of the "Dräger Gas Detection Connect" (GDC) a new data storage concept will also be introduced.

Dräger Gas Detection Connect is a Software as a Service (SaaS) solution for the digitalization and networking Dräger gas detection technology with a focus on fleet administration / fleet management and data transmission ("live monitoring" / visualization). Thanks to the cloud capability of the SaaS product, the customer's gas detection devices fleet can be managed independently of time and location. Measurement results and alarms can be displayed on a map via telemetry with the location of the gas detection devices, which allow direct networking, and provide current measurement values and alarms.

Why is there a new data storage concept?

There are several reasons why the new concept was developed. The main reasons are shown below:

Datalogger 2.0 "ALC"/ NEW	Datalogger 1.0 / Legacy
Dynamic	Fixed
For concentration changes of a certain size	Must be configured
and max. every 10 seconds	(e.g.: 1 s, 30 s, 1 min)
always (in GDC mode)	Only if option is active
X-dock: only new data	Always entire logger, therefore
Dräger CC-Vision/GasVision: entire logger	deletion necessary
Optimized for long recording time, but not	Depends on interval and number of
calculable as it depends on the ambient con-	channels and device type:
ditions. Very long recording times, especially	Complicated to calculate
with low dynamics.	
Yes, e.g. peak information at "Alarm_off" or	No
additional information at bump test	
Yes, always	Configurable
Always peak value	Configurable, depends on device
Always active	ON/OFF configurable
Machine evaluation. GasVision, Excel export	Human readability (text file). Not
possible for human readability.	reliably evaluable by machine analysis.
Yes. Same event description across all	No. Each device has its own specific
devices.	memory implementation peculiarities.
	Dynamic For concentration changes of a certain size and max. every 10 seconds always (in GDC mode) X-dock: only new data Dräger CC-Vision/GasVision: entire logger Optimized for long recording time, but not calculable as it depends on the ambient conditions. Very long recording times, especially with low dynamics. Yes, e.g. peak information at "Alarm_off" or additional information at bump test Yes, always Always peak value Always active Machine evaluation. GasVision, Excel export possible for human readability. Yes. Same event description across all

Previous method with intervals:

The previous method was developed with the focus on "readability" for the Dräger Pac and X-am 125 device series. The result is a text file that is readable even without the Dräger Gas-Vision PC software and thus enables a quick check by "humans" but is in no way optimized for machine analysis.

The data memory according to the old method must be set (configured) accordingly. Since different settings are possible, this also means: The user must know what he can set and what this means. For example, what was the difference between "Peak" (mean value) and "Average"?

Furthermore, he must also decide between

- short interval, i.e. a short storage period with high accuracy/resolution or
- long interval, i.e. long storage period with low accuracy/resolution

and must know what effect this will have. Is one minute enough? And what happens if an alarm occurs between intervals? For the user, configuring the logger means complexity. With this method, there is no possibility of achieving a high level of accuracy over a longer period by "smartly" backing up only relevant data. At a resolution of one second, for example, a measured value would currently be stored for each second even if it were continuously at zero. The result is large files that can only be read out very slowly via infrared.

A new concept was already introduced in the Dräger X-am 8000/3500: Data is recorded every second, but only if there have been value changes.

The new method

The new datalogger method is optimized for Dräger Gas Detection Connect and is used by this product. It represents a very good compromise between high data quality/resolution and low memory capacity requirements. In particular, the low memory requirement is an important prerequisite for "Dräger Gas Detection Connect". The datalogger cannot be switched off and basically rolls. There is no "stop".

The new method is (also) called "ALC": Advanced Logging Compression (improved/intelligent compression of the datalogger).

The new ALC method is thus designed to record and store relevant changes and to filter "background noise", it is therefore "smart": It does not blindly store everything, but rather selectively stores what is also of interest. For the customer, this also means: No more options that he may hardly understand and whose impact he cannot estimate.

The data is no longer stored as a human-readable text file, but as a JSON file. This is a format

optimized for reading by machines/computers and is more difficult to understand by humans. A JSON file is optimized to be analyzed. With the Dräger CC-Vision, the datalogger can only be read out in the machine-optimized JSON format already mentioned.

With the PC software Dräger GasVision version > 7.3.9 the datalogger can be read out and the content can be displayed in the familiar graphical depiction. The depiction can also be exported as an Excel file via an export function. The Excel exports generates data that does not exist in the JSON format. This means that the compression is dissolved, and the structure is again purely chronological, so that this data becomes comprehensive. In Dräger Gas Detection Connect, a human-readable representation is of course also realized.

Possible uses:

1. Dräger X-dock networked with Dräger GDC:

the datalogger contents of the devices are downloaded from the device upon contact with the networked X-dock and transferred to the backend (cloud), for example during a bump test or an adjustment. Via the Dräger GDC frontend (browser) the data can then be viewed in the backend (cloud) and also analyzed and further processed as part of later planned functions. The new memory is thus read out in connection with Dräger GDC during every X-dock test. Only "new data" is read out, i.e. only what has been added since the last readout.

2. Dräger X-dock not networked with Dräger GDC:

The datalogger contents are downloaded from the device and stored - as usual - on the station or in the connected X-dock Manager.

3. Device connected to the Dräger Gas Detection Connect App via Bluetooth (Dräger Pac/X-am):

The App is also "online". The data is automatically transferred to the backend (cloud) directly during acquisition. The datalogger runs in parallel but marks the area that was transferred online.

4. "Live Monitoring"

If the live data transmission function of Dräger Gas Detection Connect (coupling with smartphone) is used, the data is transmitted to the backend when changes occur or at an interval (5 seconds). There is less "compression". However, the logger still stores the data, marked by the information that the device was operated online.

86 | Software solutions

5. Datalogger readout via Dräger CC-Vision/Dräger GasVision: The datalogger can always be read out via Dräger CC-Vision and Dräger GasVision, but only in the new format. Since the datalogger is rolling, a complete memory is always read out and readout takes longer. In the future, a human-readable export will only be possible with the Excel export in Dräger GasVision and of course in Dräger Gas Detection Connect.

Conclusion: The advantages of the new method ("ALC") for the customer are

- a more effective use of storage space despite larger data
- faster transfer of data, which also means faster access
- easier handling since options are no longer selectable.

5 Introduction to sensor technology

The heart of every measuring instrument is its sensor. The sensor is crucial in determining the quality of measurements, and therefore it has a fundamental influence on the safety of the user. The development and production of sensors is part of Dräger's core competence.

5.1 Selecting the proper measurement method

Selecting the correct measuring principle is essential when detecting dangerous gases. Every measuring principle has its own strengths and limits, and each is better for particular groups of gases (flammable/toxic gases and oxygen). For this reason, it is important to ask which gases/vapors occur in the workplace Generally speaking, we differentiate between the following gas risks:

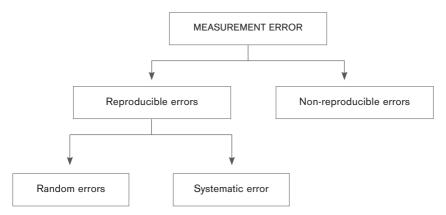
Risk of explosion

- Wherever flammable gases and vapors occur, there is an increased risk of explosion. Typical areas for this include mining, refineries, the chemical industry, and many others. Infrared and catalytic bead sensors are used to detect this type of risk. These sensors usually detect gas concentrations in the LEL (lower explosure level) range, but some of them can also be used for the 100 Vol.-% range.

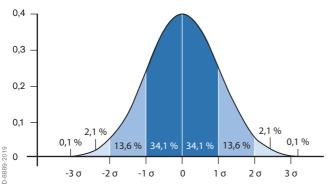
Lack or excess of oxygen

 A lack of oxygen is life-threatening. An excess of oxygen can affect the flammability of materials and can even cause auto-ignition. Electrochemical sensors are used to measure oxygen. Their measuring range is from between 0 and 25 Vol.-% all the way up to 100 Vol.-%.

Toxicity


 Poisonous substances can occur anywhere – in industrial production and processing, in transport (rail, road, ship), in the case of incomplete combustion (CO), and also as a result of completely naturally processes such as rotting and decomposition of biomass. Electrochemical and PID sensors are used to detect toxic gases.

The decision about which sensor type is the right one for a particular application also depends on other factors such as:


- What other hazardous material are present (cross-sensitivity)?
- Is it necessary to measure hazardous material selectively, or is it more sensible to measure a complete parameter?

Measurement deviations

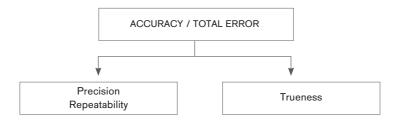
The difference between the displayed value by a gas detector and the true value is described as the measurement deviation. There is no measurement system, which always displays the correct value. The aim of every measurement system is to eliminate or at least minimise measurement deviations.

There are many potential causes of measurement errors, which are divided into reproducible and non-reproducible errors. Technically, the latter should never arise during analysis, but in fact they are time and again the cause of false assessments of the situation. Typical examples include the use of measurement equipment that is not suitable for the application, or measurements taken in the wrong place. The cause of the reproducible errors lies in the measuring device. These are divided into random errors and systematic errors.

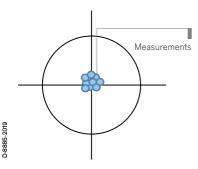
Standard deviation

Normal distribution of test results and their propabillity of incidence as a function of their deviation from the mean value

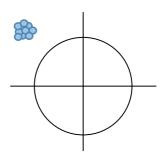
Random Errors/Precision


The precision or random errors of measuring instruments are determined by the fluctuation of the measured values around a mean value. This equation is also referred to as repeatability.

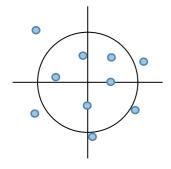
Systematic Errors/Trueness


Trueness / systematic error describes the deviation of the mean value of several measurements from the true concentration.

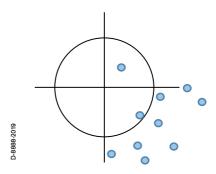
Accuracy/Total Error


Accuracy is a generic term that is used in measurement technology and quality assurance. It is a parameter to quantify the reproducible errors. A measuring instrument is accurate when it combines both high precision and a high degree of trueness, i.e. when it yields minimal random and systematic errors.

EN 60051 defines the accuracy of a measuring instrument as "the degree of compliance between a test result and the accepted reference value". This means that the deviation between the displayed measured value and the true concentration is indicated.



Precision good + trueness good → Accuracy good



Precision good + trueness bad \rightarrow Accuracy bad

D-8886-2019

Precision bad + trueness good → Accuracy bad

Precision bad + trueness bad → Accuracy very bad

Detection Limit / Quantitation Limit

Analytics differentiates between the detection limit and the quantitation limit. The detection limit (limit of detection, LoD, or lower detection limit, LDL) is the lowest measured value at which the presence of a substance can be proven qualitatively. The quantitation limit (limit of quantitation, LoQ) is the smallest concentration of an analyte that can be quantitatively determined with a defined level of accuracy. The quantitation limit always has a degree of accuracy that is at least equal to or greater than that of the detection limit.

Measurement accuracy of gas detectors

The measurement accuracy of gas detectors is determined by their systematic errors (trueness) and less by the precision of the sensors. The following factors should particularly be considered:

- Trueness depending on linearity errors,
- Trueness depending on temperature,
- Trueness depending on humidity,
- Trueness depending on pressure.

The mentioned factors result from the physical properties of the used sensor technology and must basically be considered for all sensors. Some measurement properties, such as sensitivity, may change over the sensor lifetime. The systematic errors and precision also change accordingly. The numeric values given in the specifications apply to sensors in mint condition.

A calibration under the conditions prevailing during the measurement (e.g. temperature) improves the trueness of the measured values. For example, especially the linearity near the adjustment concentration is significantly better. To achieve the greatest possible accuracy, a target gas calibration is recommended. In addition, the trueness of the measured value is also particularly determined by the uncertainty (tolerance) of the test gas concentration.

.

5.2 Overview of	of -	de	tec	cta	ble	e v	ap	or	Sa	ano	d g	as	ses	•			
ORDER NO		68 11 535	68 09 115					68 11 535	68 09 115		68 11 535	68 09 115			68 10 888	68 09 145	
Ž.		XXS OV-A	XS EC Organic Vapors					XXS OV-A	XS EC Organic Vapors		XXS OV-A	XS EC Organic Vapors			XXS NH ₃	XS EC NH ₃	
X-PID SENSORS — 600 500 500 500 500 500 500 500 500 500							-			-				-			=
OO 6 6 9 OO HO DE COMPANY DID LC PAR SHORNES CIRCH X		=			*		*			*			*	*	*		*
DUAL IR-EX CO ₂ HC						*											
CATEX 36 PR GAS ON THE PRINCE OF SOLUTION				*		*		*							*		
A O		0-20-92		64-19-7	108-24-7	67-64-1	98-86-2	74-86-2		107-02-8	107-13-1		107-18-6	107-05-1	7664-41-7		62-53-3
CHEMICAL		Acetaldehyde		Acetic acid	Acetic anhydride	Acetone	Acetophenone	Acetylene		Acrolein	Acrylonitrile		Allyl alcohol (2-Propen-1-ol)	Allyl chloride	Ammonia		Aniline

Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

X-PID SENSORS POR CORP. A POR	PID EC ORDER NO.	XXS PH ₃ 68 10 886	XS EC Hydride 68 09 135		*	*	*	XXS Cl ₂ 68 10 890	XS EC Cl ₂ 68 09 165	= *	*	* XXS OV 68 11 530	XS EC Organic Vapors 68 09 115			-	— **
SMART CATEX (FR FR) 69 69 69 69 69 69 69 69 69 69 69 69 69	T EX IR			*								* * * * * * * * * * * * * * * * * * * *		* * * * * *			
90 (dd 011) X31V0 13W10	CAS-NO. CAT	7784-42-1		71-43-2	100-47-0	100-51-6	92-52-4	7726-95-6		106-94-5	75-25-2	106-99-0		75-28-5	106-97-8	78-92-2	
CHEMICAL	DESIGNATION	Arsine		Benzene	Benzonitrile	Benzyl alcohol	Biphenyl	Bromine		1-Bromopropane	Bromoform (Tribromomethane)	1,3-Butadiene		i-Butane	n-Butane	2-Butanol	

Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

	ORDER NO.								68 12 535	68 09 200	68 12 535	68 09 200		68 10 889	68 09 175		
SHOSNES GIAX	EC					*			XXS Odorant	XS EC Odorant	XXS Odorant	XS EC Odorant		XXS CO ₂	XS EC CO ₂		
XPID SENSORS PID LC PPB PID PC SMART PD	PID	-	8	*	*	*	*	*								*	
SMARTI IR.EX. DUAL IR.EXVCO2 ES— 18-26 18-60 18	- L		* *		*		*							*			
SMART CATEX (PR) PO	CAT EX		* * *		*		*										
	CAS-NO.	106-98-9	115-11-7	112-07-2	123-86-4	141-32-2	71-36-3	109-79-5	513-53-1		75-66-1		123-72-8	124-38-9		75-15-0	
CHEMICAL	DESIGNATION	1-Butene	i-Butene	2-Butoxyethyl acetate	n-Butyl acetate	n-Butyl acrylate	n-Butylalcohol	n-Butyl mercaptan (Butanethiol)	sec.Butylmercaptan		tert. Butylmercaptan		Butyraldehyde	Carbon dioxide		Carbon disulfide	

Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

CHEMICAL		CATEX SE PR 66 90 90 90 90 90 90 90 90 90 90 90 90 90	SWART IR-EX SMART IR-EX SMART IR-CO ₂ HC SMART IR-CO ₃ HC SMART IR-EX SMART IR-	K-PID SENSORS PID TC PPB PID HC SMART PID SMART PID		
DESIGNATION	CAS-NO.	CAT EX	<u>R</u>	PID	EC	ORDER NO.
Carbon monoxide	030-08-0	* * * * * * * * * * * * * * * * * * * *			XXS CO	68 10 882
					XXS H ₂ S/CO	68 11 410
					XXS H ₂ S LC/CO LC	68 13 280
					XXS CO H ₂ -CP	68 11 950
					XXS CO LC	68 13 210
					XXS CO LC/O ₂	68 13 275
					XXS CO HC	68 12 010
					XXS E CO	68 12 212
					XS EC CO	68 09 105
					XS EC CO HC	68 09 120
					XS 2 CO	68 10 365
					XSRCO	68 10 258
Chlorine	7782-50-5				XXS Cl ₂	68 10 890
					XS EC CI ₂	68 09 165
Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined	ly measurable, sensi	tivity not yet determined	- - - - -	- -		

CAS-NO. CATEX IR	H MICA	o de la companya de l	CATEX SR 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60	X3-RI TRAMS	SMART IR-CO ₂ HC 60 00 00 00 00 00 00 00 00 00 00 00 00	SMART PID SENSORS THE SENSORS CITY OF SENSORS		
78-95-5 106-47-8 108-90-7 108-39-4 108-39-4 108-39-4 108-39-4 110-82-7 108-91-8 1108-9	DESIGNATION		EX				EC	ORDER NO.
T8-95-5 T06-47-8 T06-47-8 T06-89-8 T08-90-7 T08-90-7 T08-80-8 T08-84-5 T08-48-7 T08-48-7 T08-94-1 T10-82-7 T08-94-1 T08-94-1 T08-94-1 T08-94-1 T08-94-1								
78-95-5 106-47-8 106-89-8 xypropane 106-89-8 (2-Butenal) 4170-30-3 108-94-1 108-94-1 108-94-1 108-91-8 x+	Chlorine dioxide	10049-04-4				*	XXS EC CI ₂	68 10 890
78-95-5 106-47-8 108-90-7 108-39-4 108-39-4 106-44-5 106-44-5 106-82-8 106-82-8 108-94-1 108-94-1 108-94-1 108-94-1 108-91-8 78-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8							XS EC CI ₂	68 09 165
78-95-5 ** 106-47-8 ** 108-90-7 ** 108-39-4 ** 95-48-7 ** 106-44-5 ** 108-39-4 ** 106-44-5 ** 110-82-7 ** 108-94-1 ** 108-94-1 **							XS EC CIO ₂	68 11 360
106-47-8 * 108-90-7 * xypropane 106-89-8 108-39-4 * 95-48-7 * 106-44-5 * 2ylbenzene) 98-82-8 108-94-1 * 108-94-1 *	Chloroacetone	78-95-5				*		
ypropane 106-89-8 108-39-4 108-39-4 106-44-5 106-44-5 108-94-1 108-94-1 108-94-1 108-94-1 108-94-1 108-94-1 108-91-8 108-90-7 108-90-7 108-91-8 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-7 108-90-8 108-90-7 108-90-	4-Chloroaniline	106-47-8				*		
Aypropane 106-89-8 * 108-39-4 * 95-48-7 * 106-44-5 * 3ylbenzene) 98-82-8 110-82-7 * 108-94-1 * 108-91-8 *	Chlorobenzene	108-90-7				*		
108-39-4 106-44-5 106-44-5 106-44-5 108-94-1 108-94-1 108-94-1 108-91-8 108-91-8	1-Chloro-2,3 epoxypropane	106-89-8				*	XXS OV	68 11 530
(2-Butenal) 4170-30-3	(Epichlorohydrin)						XS EC Organic Vapo	rs-A68 09 522
95-48-7 106-44-5 (2-Butenal) 4170-30-3 ylbenzene) 98-82-8 110-82-7 108-94-1 108-91-8 ** ** ** ** ** ** ** ** **	m-cresol	108-39-4				*		
(2-Butenal) 4170-30-3 ** Sylbenzene) 98-82-8 ** 110-82-7 ** 108-94-1 ** 108-91-8 ** ** ** ** ** ** ** ** ** **	o-cresol	95-48-7				*		
(2-Butenal) 4170-30-3 ** Sylbenzene) 98-82-8 ** 110-82-7 ** ** 108-94-1 ** 108-91-8 **	p-cresol	106-44-5				*		
3ylbenzene) 98-82-8 * * * * * * * * * * * * * * * * * * *	Crotonaldehyde (2-Butenal)	4170-30-3				*		
110-82-7 * * * 108-94-1	Cumene (Isopropylbenzene)	98-85-8				-		
108-94-1	Cyclohexane	110-82-7	*	*		8		
108-91-8	Cyclohexanone	108-94-1				*		
	Cyclohexylamine	108-91-8				*		

SMART IR-CO ₂ HC 69 69 69 69 69 69 69 69 69 69 69 69 69	*	*	XXS PH ₃ 68 10 886	XS EC Hydride 68 09 135	*	*	*	•		*		* * XXS Amine 68 12 545	XS EC Amine 68 09 545	*	-
CAN SWART CATEX (PR PR) 69 12 90 00 00 00 00 00 00 00 00 00 00 00 00	287-92-3	124-18-5	19287-45-7		142-96-1 * * * *	111-92-2	95-50-1	156-59-2	156-60-5	542-75-6	.g. 68476-34-6 * * * *	* 109-89-7		91-66-7	105-58-8
CHEMICAL DESIGNATION	Cyclopentane	n-Decane	Diborane		Dibutylether	Di-n-butylamine	1,2-Dichlorobenzene	1,2-Dichloroethylene (cis)	1,2-Dichloroethylene (trans)	1,3 Dichloropropene	Diesel fuel	Diethylamine		N,N Diethylaniline	Diethylcarbonat

Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

CHFMICAL		CYLEX 28	SMARTI IR-EX/CO ₂ HC	SMART PID SENSORS APPLIES SENSORS SPART PID SENSORS APPLIES SPART PID SENSORS APPLIES		
DESIGNATION	CAS-NO.	VT EX		_	EC	ORDER NO.
Diethylether	60-29-7	*	* *		XXS OV-A	68 11 535
11-Difluorethylana	75,38,7			ж.	XS EC Organic Vapors	68 09 115
N,N-Dimethylacetamide	127-19-5			*		
Dimethylamine	124-40-3	* * * *		*	XXS Amine	68 12 545
					XS EC Amine	68 09 545
Dimethyl carbonate	616-38-6			_		
Dimethyldisulfide	624-92-0			*	XXS Odorant	68 12 535
					XS EC Odorant	68 09 200
Dimethyl ether	115-10-6	* * *	* *	*		
N,N-Dimethylformamide (DMF)	68-12-2			*		
Dimethylhydrazine	540-73-8				XS EC Hydrazin	68 09 190
Dimethylsulfide	75-18-3			*	XXS Odorant	68 12 535
					XS EC Odorant	68 09 200
1,4-Dioxane	123-91-1			*		
1,2-Epoxypropane	75-56-9	*		*		
Sensitivity data known * Substance theoretics	ally measurable, sen	theoretically measurable, sensitivity not yet determined	- - - -	-		

CHEMICAL		CATEX SR PRO PO	SMART IR-EX SMART IR-CO ₂ SMART IR-CO ₂ SMART IR-CO ₃ S	DIAL IR-EX/CO ₂ HC - 66 66	SWART PID SENSORS CP 19 10 10 10 10 10 10 10 10 10 10 10 10 10		
DESIGNATION	CAS-NO.	CAT EX	≅		PID	EC	ORDER NO.
Ethane	74-84-0	*	*	*			
Ethanol	64-17-5	*	-	:	•	XXS OV-A	68 11 535
						XS EC Organic Vapors	68 09 115
Ethene	74-85-1	*	-	:	•	XXS OV	68 11 530
						XS EC Organic Vapors	68 09 115
Ethylacetate	141-78-6	*	*	*	*		
Ethyl acrylate	140-88-5		*	*	*		
Ethyl amine	75-04-7	* * * *			*	XXS Amine	68 12 545
						XS EC Amine	68 09 545
Ethylbenzene	100-41-4				-B		
Ethylbromide	74-96-4				*		
Ethyl cellosolve (2-Ethoxyethanol)	110-80-5				*		
Ethylenediamine (1,2-Diaminoethane) 107-15-3)107-15-3				*		
Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined	ly measurable, sensi	tivity not yet determined	- - -		- -		

CHEMICAL		COLIEX SIS OF SOLUTION OF SOLU	SMARTI RESTOR HC POR	SMART PID LC PPB SAVART PID ACT SAVART PID CO SAVART PID C		
DESIGNATION	CAS-NO.	CATEX	≅	PID	EC	ORDER NO.
Ethylene oxide	75-21-8			*	XXS OV	68 11 530
					XXS OV-A	68 11 535
					XS EC Organic Vapors 68 09 115	68 09 115
					XS EC Organic Vapors A68 09 522	468 09 522
2-Ethylhexylacrylate	103-11-7			*		
Ethyl mercaptan (Ethanethiol)	75-08-1				XXS Odorant	68 12 535
					XS EC Odorant	68 09 200
Ethylmethylcarbonat	623-53-0			-		
Ethyl tert butyl ether (ETBE)	637-92-3			*		
4-Ethyltoluene	622-96-8			=		
Fluorine	7782-41-4				XXS Cl ₂	68 10 890
					XS EC CI ₂	68 09 165
Formaldehyde	20-00-0				XXS OV	68 11 530
					XS EC Organic Vapors	68 09 115
Furan	110-00-9			*		
Sensitivity data known * Substance theoretical	lly measurable, sens	theoretically measurable, sensitivity not yet determined	-	- - -		

HEMICAL		CATEX SR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	ВРАВТІ Р. ЕХ ООД 1 В В В В В В В В В В В В В В В В В В	SMART PID SENSORS OF 1200		
DESIGNATION	CAS-NO.	×		D	EC	ORDER NO.
Furfural	98-01-1			= *		
Germanium hydride	7782-65-2				XXS PH ₃	68 10 886
				_	XS EC Hydride	68 09 135
n-Heptane	142-82-5	# *	* *	= = *		
1,1,1,3,3,3-Hexamethyldisilazane	999-97-3			=		
i-Hexane (2-Methylpentane)	107-83-5			*		
n-Hexane	110-54-3	# *	*			
1-Hexene	592-41-6			*		
Hydrazine	302-01-2			*	XS EC Hydrazin	68 09 190
Hydrogen	1333-74-0	# # # *			XXS H ₂	68 12 370
					XXS H ₂ HC	68 12 025
					XS EC H ₂	68 09 185
				*	XS H ₂ HC	68 11 365
Hydrogen bromide	10035-10-6			*	XS EC HF/HCI	68 09 140
Hydrogen chloride	7647-01-0			_	XS EC HF/HCI	68 09 140
				-		

■ Sensitivity data known ★ Substance theoretically measurable, sensitivity not yet determined

CHEMICAL		SMART CATEX (PR) 69 SMART CATEX (PR PR) 69 CAT EX 126 PR CATEX 68	S NOVELVO	80 хэл тямг хэл тямг хэл тямг 80 эн сол я тямг 200 я тямг эол я тямг	ONDULU 11 COO)	DUAL IR-EXICO ₂ HC 68	жыр сеизовз 69 69 69 69 69 69 69 69 69 69 69 69 69	X-bID 2EN2OB2		
DESIGNATION	CAS-NO.	CAT EX		R			PID		EC	ORDER NO.
									XS EC H ₂ S 100	68 09 110
									XS EC H ₂ S HC	68 09 180
									XS 2 H ₂ S	68 10 370
									XS R H ₂ S 100	68 10 260
4-Hydroxy-4-methyl-2-pentanone	123-42-2						*			
(aceton alcohol)										
lodomethane	74-88-4						*			
Iron pentacarbonyl	13463-40-6						*			
Isoamyl acetate	123-92-2						*			
Isobutanol	78-83-1						-			
Isobutene	115-11-7						-		XXS OV-A	68 11 535
									XS EC Organic Vapors	ors 68 09 522
Isobutyle acetate	110-19-0						*			
sobutyraldehyde	78-84-2						*			
Isopentane (2-Methylbutane)	78-78-4						*			
Isoprene (2-Methyl-1,3-Butadiene)	78-79-5						*			
sopropy acetate	108-21-4						*			

H H M C		CATEX SR PROPERTY OF STATES OF STATE	SMART IR-EX SMART IR-CO ₂ HC	SMART PID HO OUT OUT OUT OUT OUT OUT OUT OUT OUT OU	
DESIGNATION	CAS-NO.	CAT EX	≅ -	D EC	ORDER NO.
sopropyl cellosolve	109-59-1			*	
Isopropyl ether	108-20-3				
Jet Fuel e.g	e.g. 8008-20-6	* * * *	-	8	
Liquefied gas	e.g. 68476-85-7	* *	*		
(50 % Propane + 50 % n-Butane)					
Methane	74-82-8	# # # #	-		
2-Methoxy-ethanol	109-86-4				
1-Methoxy-Propanol-2	107-98-2	*	*		
1-Methoxy-2-propylacetate	108-65-6			*	
Propylene glycol monomethyl					
Ether acetate (PGMEA)					
Methyl acetate	79-20-9				
Methyl acrylate	96-33-3			-	
Methyl alcohol (Methanol)	67-56-1	*	*	89 AV SXX	68 11 530
				XS EC Organic Vapors 68	68 09 115
Methyl bromide (Bromomethane)	74-83-9			#######################################	
Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined	cally measurable, sensiti	ity not yet determined	-	-	

1634-04-4 * * * * * * * * * * * * * * * * * *	1634-04-4 * * * * * * * * * * * * * * * * * *	1634-04-4	1634-04-4	* * XXS Amine
74-89-5 XXS Amine	74-89-5 XXS Amine	74-89-5 ** XXS Amine	74-89-5 XXS Amine	74-89-5 XXS Amine
XXS Amine	XXS Amine	XXS Amine	XXS Amine	XXS Amine

Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

		(AP) X	10 ES - 68 0 10 10 10 10 10 10 10 10 10 10 10 10 1	1 6 80 — 00 6 60 —		
CHEMICAL		SMART CATE) SMART CATE) SMART CATE CAT EX 126 PR CATEX 126 PR CATEX 38	SMART IR-EX SMART IR-CO SMART IR-CO IR-CO DUAL IR-EX/C	X-PID SENSOI PID LC PPB SMART PID		
DESIGNATION	CAS-NO.	CAT EX	IR	PID	EC	ORDER NO.
Months of the charge of the ch	7 70 09				0 ×	00 00
MOTOTI SELIZIONI AZILI G	1				AS EO LISUI AZIII	000
Napthalene	91-20-3			*		
Nitric acid	7697-37-2				XS EC HF/HCI	68 09 140
Nitrobenzene	98-95-3			*		
Nitrogen dioxide	10102-44-0				XXS NO ₂	68 10 884
					XXS NO ₂ LC	68 12 600
					XS EC NO ₂	68 09 155
Nitrogen monoxide	10102-43-9				XXS NO	68 11 545
					XS EC NO	68 09 125
o-Nitrotoluene	88-72-2			*		
3-Nitrotoluene	99-08-1			*		
n-Nonane	111-84-2	*	-	=		
Iso-Octane (2,2,4-Trimethylpe	entane) 540-84-1			*		
n-Octane	111-65-9	*	* *	=		
Oxygen	7782-44-7				XXS O ₂	68 10 881
					XXS O. PR	68 00 530

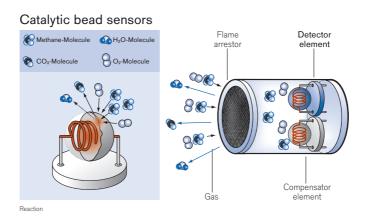
CHEMICAL		CATEX SR PROPERTY OF STATES OF STATE	26 6 9 ОН 2003 ПТЯАМЯ 29 6 0 ОН 2003 ПТЯАМЯ 20 0 ОН 2003 ПТЯАМЯ 20 0 ОН 2003 ПТЯАМЯ 20 0 ОН 2003 ПТЯАМЯ	BUAL IREX/CO ₂ HC 60 60 60 60 60 60 60 60 60 60 60 60 60	SWART PID SENSORS SAMPRIT PID GO 100 100 100 100 100 100 100 100 100 10		
DESIGNATION	CAS-NO.	CAT EX	IR		PID	EC	ORDER NO.
						XXS O ₂ /CO LC	68 13 275
						XXS O ₂ /H ₂ S LC	67 14 137
						XXS E O_2	68 12 211
						XXS O ₂ 100	68 12 385
						XS EC O ₂ LS	68 09 130
						XS EC O ₂ 100	68 09 550
						XS 2 O ₂	68 10 375
						XS R O ₂ LS	68 10 262
Ozone	10028-15-6					XXS Ozone	68 11 540
n-Pentane	109-66-0	# # # # # # # # # # # # # # # # # # #	•	=	*		
Pentylalcohol	71-41-0	*	*	*	-		
3-Pentylalcohol e.g.	. 584-02-1	-					
Petrol (Gasoline)	8006-61-9	*	*	*	=		
Phenol	108-95-2				*		
Phenyl hydrazine	100-63-0				*		
Phosgene	75-44-5					XXS COCI ₂	68 12 005
						XS EC COCI ₂	68 08 582
Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined	ly measurable, sensitivit	y not yet determined	-	-	-		

CHEMICAL		CATEX SR HC PR) - 69 1 90 1 90 1 90 1 90 1 90 1 90 1 90 1	SMART IR-EX REFS SMART IR-CO ₂ SMART IR-CO ₂ SMART IR-CO ₂ BUAL IR-EX/CO ₂ ES SMART IR-CO BUAL IR-EX/CO BUAL IR-	жыр земзомз ыр гс ььв ыр гс ььв ыр гс ььв змукц ыр ыр нс — 80 10 10 10 10 10 10 10 10 10 10 10 10 10	X-PID SENSORS	
DESIGNATION	CAS-NO.	CAT EX	≅ _	PID	EC	ORDER NO.
Phosphine	7803-51-2			*	XXS PH ₃	68 10 886
					XXS PH ₃ HC	68 12 020
					XS EC Hydride	68 09 135
					XS EC PH ₃ HC	68 09 535
Phosphorous trichloride	7719-12-2				XS EC HF/HCI	68 09 140
Phosphorous trichloride oxide	10025-87-3				XS EC HF/HCI	68 09 140
alpha-Pinene	2437-95-8			-		
Propane	74-98-6	*	:	_		
i-Propanol	67-63-0	*		*	XXS OV	68 11 530
					XS EC Organic Vapors	s 68 09 115
n-Propanol	71-23-8	*	*	*	-	
Propene (Propylene)	115-07-1	# # *	*	*	XXS OV	68 11 530
					XS EC Organic Vapors	s 68 09 115
Propionaldehyde (Propanal)	123-38-6			*		
n-Propyl acetate	109-60-4			*		
Sensitivity data known * Substance theoretical	ily measurable, sensit	theoretically measurable, sensitivity not yet determined	- - - -	-	-	


CHEMICAL		CYLEX 28	SWART IR-EX SWART IR-EX SWART IR-CO ₂ HC SWART IR-CO ₃ HC SWART IR-CO SWART SWART IR-CO SW	SMART PID SENSORS SHART PID SENSORS SHART PID SENSORS		
DESIGNATION	CAS-NO.	CAT EX	≅	PID	EC	ORDER NO.
Propylene Oxide	75-56-9		*	*	XXS OV	68 11 530
(1,2 Epoxy propane)					XS EC Organic Vapors	68 09 115
Silane	7803-62-5				XXS PH ₃	68 10 886
					XS EC Hydride	68 09 135
Styrene	100-42-5	*		•	XXS OV	68 11 530
					XS EC Organic Vapors A68 09 522	A68 09 522
Sulphur dioxide	7446-09-5				XXS SO ₂	68 10 885
					XS EC SO ₂	68 09 160
Tetrachloroethylene (PCE)	127-18-4			-		
Tetraethyl lead	78-00-2			*		
Tetrahydrofuran	109-99-9			= = *	XXS OV	68 11 530
Tetrahydrothiophene	110-01-0			*	XXS Odorant	68 12 535
					XS EC Odorant	68 09 200
Thiophene	110-02-1			= *		
Toluene	108-88-3	*	-	8		
2,4-Toluene diisocyanate	584-84-9			*		
Sensitivity data known * Substance theoretics	ally measurable, sens	* Substance theoretically measurable, sensitivity not yet determined	- - - -	- - -		

CAS-NO. CATEX 38 PR GAS 98 99 563.4 PLOTE (PRO) PLO PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	XS EC Organic Vapors	XS EC Organic Vapors	XS EC Organic Vapors	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	108-05-4	XS EC Organic Vapors	XXS OV-A XS EC Organic Vapors	XS COrganic Vapors	XS EC Organic Vapors	V-NO XXX	V-VOSXX ■ XXS OV-A	A-WO SXX B XXS OV-A	A-VO XXX	V-\0 SXX = = +	∇-//O 0XX ■ ■ ■ →						_	enzene (Mesitviene) 108-0/-8	(Mosinana) 108-67-8									AAS Amine	AXX Axio					* * * * * Amine	******												
CHEMICAL DESIGNATION CAS-NO. O-Toluidine O-Toluidine Trichloro methane (Chloroform) Trichloromethylamine Trichlylamine Trichlylamine Trichloromethylamine Trichlylamine Trichloromethylamine Trichlylamine Trichloromethylamine Trichloromethylamin										Vinyl bromide 593-60-5 Vinyl chloride (Chloroethylene) 75-01-4																																																																																								,	rimetnyibenzene (imesityiene) 100-07-0	rimethylhenzene (Mesitylene) 108-67-8		localitatio,	OCIIMANA)																			

■ Sensitivity data known ★ Substance theoretically measurable, sensitivity not yet determined


	ORDER NO.					
жилят пр со	PID EC		=	-	-	- - -
SMART IR-EX BUAL IR-EX/CO ₂ SMART IR-CO ₂	8			-		- - - -
SMART CATEX (HC PR) 68 2 90 CATEX 126 PR GAS 6	CAT EX			*		sitivity not yet determined
	CAS-NO.	75-35-4	108-38-3	95-47-6	106-42-3	lly measurable, sen
CHEMICAL	DESIGNATION	Vinylidene chloride (1,1-DCE)	m-Xylene	o-Xylene	p-Xylene	Sensitivity data known * Substance theoretically measurable, sensitivity not yet determined

5.3 Dräger CatEx sensors

Under certain circumstances, flammable gases and vapors can be oxidized using the oxygen in the ambient air, causing heat of the reaction to be released. Typically, this is achieved through the use of special and suitably heated catalyst material, which slightly increases its temperature through the resulting heat of reaction. This slight increase in temperature is a measure of the gas concentration.

A small platinum coil is embedded in a porous ceramic bead with a diameter of less than 1 mm (0.04 in.). A current flows through the platinum coil, heating the pellistor to several hundred degrees. If the pellistor contains a suitable catalytic material, then its temperature will increase in the presence of flammable gases, which in turn causes the resistance of the platinum coil to increase. This change in resistance can then be evaluated electronically. The oxygen required for the combustion comes from the ambient air. This sensor works on the basis of the catalytic bead principle.

6400-2009

In order to eliminate changes in the ambient temperature, a second pellistor is used with almost the same structure, but which does not react to gas (it may, for example, contain no catalytic material). Coupled by a Wheatstone bridge, the two pellistors then form a sensor circuit, which is largely independent of the ambient temperature, and which can detect the presence of flammable gases and vapors. Because a catalytic bead sensor contains hot pellistors, it can — if the lower exposure level (LEL) is exceeded — become a source of ignition in its own right. This is prevented using a metal flame arrester. If an ignition occurs in the interior of the catalytic bead sensor, then the sensor's housing withstands the explosion pressure and the flame is cooled to below the ignition temperature of the gas by the flame arrester disk. This ensures that the flame does not penetrate through to the outside of the sensor. If the device is adjusted and calibrated accordingly, then the thermal conduction signal can be used to determine the gas concentration of methane between 0 and 100 Vol.-%.

DrägerSensor® Smart CatEx (HC PR) Order no. 68 12 970

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)
	1 Vol% for the measuring range 5 to 100 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL or
	0 to 100 Vol% CH ₄ (methane)
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH

METHANE IN AIR:	
Response time:	≤ 15 seconds (t ₅₀)
	≤ 25 seconds (t ₉₀)
Precision:	≤ ± 2.5% of measured value
Linearity error	≤ ± 2% LEL (0-40% LEL)
	≤ ± 5% of measured value (40-100% LEL)
Long-term drift	
Zero point:	≤ ± 1% LEL/month
Precision:	≤ ± 2% LEL/month
	typ. values for X-am 7000 ≤ ± 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Precision:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.03% LEL/% RH
Precision:	≤ ± 0.1% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulfide H_2S 1000 ppmh $\leq \pm 5$ % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh \leq ± 20 % of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss
	is less than 50 %. Halogenated hydrocarbons or volatile silicon,
	sulphur, heavy metal compounds or substances that can polymerize
	→ potential poisoning.
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

	<u></u>
Response time:	≤ 20 seconds (t ₅₀)
	≤ 40 seconds (t ₉₀)
Precision:	≤ ± 2.5% of measured value
Linearity error:	≤ ± 4% LEL (0-40% LEL)
	\leq ± 10% of measured value (40–100% LEL)
Long-term drift	
Zero point:	≤ ± 4% LEL/month
Precision:	≤ ± 1% LEL/month
	typ. values for X-am 7000 ≤ ± 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Precision:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.04% LEL/% RH
Precision:	≤ ± 0.1% of measured value/% RH

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 35 seconds at 0 to 5 Vol% (t ₉₀)
Precision:	1 Vol% CH4
Linearity error:	
5 to 50 Vol%	≤ ± 5 Vol%
50 to 100 Vol%	≤ ± 10% of measured value
Long-term drift	
Zero point:	≤ ± 3 Vol%/month
Precision:	≤ ± 3 Vol%/month
Influence of temperature	
Sensitivity 0 to 50 Vol%	≤ ± 0.2 Vol%/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity 50 to 100 Vol%	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Sensitivity 0 to 50 Vol%	≤ ± 0.15 Vol%/% RH
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH

TECHNICAL SPECIFICATIONS

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	≤ 60 seconds (t ₅₀)
	≤ 320 seconds (t ₉₀)
Response time, declining:	≤ 130 seconds (t ₅₀)
	≤ 1000 seconds (t ₉₀)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (HC PR) is used to detect flammable gases and vapors in the ambient air: LEL monitoring or, in the case of methane, also Vol.-% monitoring. It has an excellent poison resistance against hydrogen sulfide, siloxiane and other sensor poisons. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If an LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
Acetylene	C ₂ H ₂	1.15	34
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26
Acetic acid	CH₃COOH	3.00	23
Ammonia	NH ₃	7.70	58
Benzene	C ₆ H ₆	0.60	22
Butane	C ₄ H ₁₀	0.70	27
Butanone	CH ₃ COC ₂ H ₅	0.75	22
Carbon monoxide	СО	5.45	41
Cyclohexane	C ₆ H ₁₂	0.50	21
Cyclopentane	C ₅ H ₁₀	0.70	27

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26
Ethane	C ₂ H ₆	1.20	34
Ethanol	C ₂ H ₅ OH	1.55	31
Ethene	C ₂ H ₄	1.20	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24
Heptane	C ₇ H ₁₆	0.40	18
Hexane	C ₆ H ₁₄	0.50	21
Hydrogen	H ₂	2.00	48
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22
Methane	CH ₄	2.20	50
Methanol	CH₃OH	3.00	39
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27
n-butanol	C4H ₉ OH	0.70	19
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	1.00	26
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
o-Xylene	C ₆ H4(CH ₃) ₂	0.55	19

The given values may fluctuate by ±30 %.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapours. Poisoning of the sensor may also alter the relative sensitivities for certain gases and vapours. The specified test gas concentrations correspond to 50 % of the lower explosion limit of each test gas (source: E. Brandes, W. Möller: Sicherheitstechnische Kenngrößen, PTB, ISBN 978-3-86509-811-5, edition 2008).

DrägerSensor® Smart CatEx (PR)

Order no. 68 12 980

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL,
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR.

≤ 15 seconds (t ₅₀)
≤ 25 seconds (t ₉₀)
≤ ± 2.5% of measured value
≤ ± 2% LEL (0-40% LEL)
\leq ± 5% of measured value (40-100% LEL)
≤ ± 1% LEL/month
≤ ± 2% LEL/month
typ. values for X-am 7000 ≤ ± 1% LEL/month
≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
100
≤ ± 0.03% LEL/% RH
≤ ± 0.1% of measured value/% RH
Hydrogen sulfide H_2S 1000 ppmh $\leq \pm 5$ % of measured value
Hexamethyldisiloxane HMDS 10 ppmh \leq ± 5 % of measured value
Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value
After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss
is less than 50 %. Halogenated hydrocarbons or volatile silicon,
sulphur, heavy metal compounds or substances that can polymerize
→ potential poisoning.
approx. 2 Vol% CH ₄

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds (t ₅₀)		
	≤ 40 seconds (t ₉₀)		
Precision:	≤ ± 2.5% of measured value		
Linearity error:	≤ ± 4% LEL (0-40% LEL)		
	≤ ± 10% of measured value (40–100% LEL)		
Long-term drift			
Zero point:	≤ ± 4% LEL/month		
Precision:	≤ ± 1% LEL/month		
	typ. values for X-am 7000 ≤ ± 1% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Precision:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.04% LEL/% RH		
Precision:	≤ ± 0.1% of measured value/% RH		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	≤ 60 seconds (t ₅₀)
	≤ 320 seconds (t ₉₀)
Response time, declining:	≤ 130 seconds (t ₅₀)
	≤ 1000 seconds (t ₉₀)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (PR) is used to detect flammable gases and vapors around the LEL in the ambient air. It has an excellent poison resistance against hydrogen sulfide, siloxiane and other sensor poisons. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed	
		in Vol%	reading in %	
			LEL	
Acetone	CH₃COCH₃	1.25	31	
Acetylene	C ₂ H ₂	1.15	34	
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26	
Acetic acid	CH₃COOH	3.00	23	
Ammonia	NH ₃	7.70	58	
Benzene	C ₆ H ₆	0.60	22	
Butane	C ₄ H ₁₀	0.70	27	
Butanone	CH ₃ COC ₂ H ₅	0.75	22	
Carbon monoxide	CO	5.45	41	
Cyclohexane	C ₆ H ₁₂	0.50	21	
Cyclopentane	C ₅ H ₁₀	0.70	27	
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24	
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26	
Ethane	C ₂ H ₆	1.20	34	
Ethanol	C ₂ H ₅ OH	1.55	31	
Ethene	C ₂ H ₄	1.20	36	
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24	
Heptane	C ₇ H ₁₆	0.40	18	
Hexane	C ₆ H ₁₄	0.50	21	
Hydrogen	H ₂	2.00	48	
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22	
Methane	CH ₄	2.20	50	
Methanol	CH₃OH	3.00	39	
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27	
n-butanol	C4H ₉ OH	0.70	19	

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading
			in % LEL
n-butyl acetate	CH ₃ COOC₄H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	1.00	26
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
o-Xylene	C ₆ H4(CH ₃) ₂	0.55	19

The given values may fluctuate by ±30 %.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapours. Poisoning of the sensor may also alter the relative sensitivities for certain gases and vapours. The specified test gas concentrations correspond to 50 % of the lower explosion limit of each test gas (source: E. Brandes, W. Möller: Sicherheitstechnische Kenngrößen, PTB, ISBN 978-3-86509-811-5, edition 2008).

DrägerSensor® Smart CatEx (FR PR) Order no. 68 12 975

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	

MARKET SEGMENTS

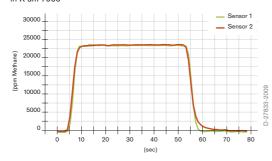
Gas supply companies (methane leak detection), telecommunications, shipping, sewage, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)
	1 Vol% for the measuring range 5 to 100 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL or
	0 to 100 Vol% CH ₄ (methane)
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH

METHANE IN AIR:	
Response time:	≤ 7 seconds (t ₅₀)
	≤ 9 seconds (t ₉₀)
Precision:	≤ ± 2.5% of measured value
Linearity error:	≤ ± 4% LEL (0−40% LEL)
	≤ ± 10% of measured value (40-100% LEL)
Long-term drift	
Zero point:	≤ ± 3% LEL/month
	typ. values for X-am 7000 ≤ ± 1% LEL/month
Precision:	≤ ± 3% LEL/month
	typ. values for X-am 7000 ≤ ± 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Precision:	\leq ± 0.2% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.05% LEL/% RH
Precision:	≤ ± 0.3% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulfide H ₂ S 1000 ppmh ≤ ± 10% of measured value
	Hexamethyldisiloxane HMDS 10 ppmh \leq ± 5% of measured value
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20% of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss
	is less than 50%. Halogenated hydrocarbons or volatile silicon, sul-
	phur, heavy metal compounds or substances that can polymerize \rightarrow
	potential poisoning.


FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	\leq 18 seconds (t ₉₀) at 0 to 5 Vol%		
Precision:	≤ ± 2.5% of measured value		
Linearity error			
0 to 50 Vol%	≤ ± 5 Vol%		
50 to 100 Vol%	≤ ± 10% of measured value		
Long-term drift			
Zero point:	≤ ± 3 Vol%/month		
Sensitivity	≤ ± 3 Vol%/month		
Influence of temperature			
Sensitivity 0 to 50 Vol%	≤ ± 0.2 Vol%/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity 50 to 100 Vol%	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Sensitivity 0 to 50 Vol%	≤ ± 5 Vol%/% RH		
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄		

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (FR PR) is especially suitable for detecting leaks on account of its fast response time (t_{90}) of less than 9 seconds for methane. It has an excellent poison resistance against hydrogen sulfide, siloxiane and other sensor poisons.

Response time of DrägerSensor® Smart CatEx (FR PR) in X-am 7000

DrägerSensor® CatEx SR

Order no. 68 51 900

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 2800	no	yes	3 years	> 4 years	no

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, fire services, chemical industry, mining, landfills, biogas plants, sewage treatment plants, tunneling, hydrogen production and storage

TECHNICAL SPECIFICATIONS

Detection limit:	2 % LEL (at calibration with methane)		
Resolution:	1 % LEL for measurement range 0 to 100 % LEL,		
	0.05 Vol% for measurement range 0 to 5 Vol% CH ₄ (methane)		
Measurement range:	0 to 100 % LEL / 0 to 5 Vol% CH ₄ (methane)		
Ambient conditions			
Temperature*:	-20 to 55 °C (-4 to 131 °F)		
Humidity:	0 to 95 % RH		
Pressure:	700 to 1300 hPa		
Warm-up time:	≤ 1 minute		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode (t ₅₀)	≤ 6 seconds		
·	Diffusion mode (t ₉₀)	≤ 11 seconds		
	Pump mode (t ₅₀)	≤ 6 seconds		
		≤ 9 seconds		
Precision:	Pump mode (t ₉₀)	> 9 seconds		
	-			
Zero point:	_ ≤ ± 1 % LEL			
Sensitivity:	≤ ± 1 % LEL at 50 % I	_EL		
Linearity:	≤ ± 10 % of mesaured	I value		
Influence of temperature				
Zero point:	≤ ± 0.05 % LEL/K			
Sensitivity:	≤ ± 0.05 % LEL/K at	≤ ± 0.05 % LEL/K at 50 % LEL		
Influence of humidity (at 40°C)				
Zero point:	≤ ± 0.03 % LEL/% RI	≤ ± 0.03 % LEL/% RH		
Sensitivity:	≤ ± 0.03 % LEL/% RH at 50 % LEL			
Influence of pressure				
Zero point:	≤ ± 0.05 % LEL/kPa			
Sensitivity:	≤ ± 0.10 % LEL/kPa at 50 % LEL			
Long-term drift				
Zero point:	= ± 1 % LEL/month			
Sensitivity:	≤ ± 1 % LEL/month at 50 % LEL			

^{*} If the Dräger gas warning device is set to hydrogen, measurements are only possible at temperatures > -10 °C. For further information, please refer to the instructions for use of the sensor!

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	Diffusion mode $(t_{50}) \le 6$ seconds				
	Diffusion mode $(t_{90}) \le 17$ seconds				
	Pump mode $(t_{50}) \le 7$ seconds				
	Pump mode (t_{90}) ≤ 9 seconds				
Precision:					
Zero point:	≤ ± 1 % LEL				
Sensitivity:	≤ ± 1 % LEL at 50 % LEL				
Linearity:	≤ ± 10 % of mesaured value				
Influence of temperature					
Zero point:	≤ ± 0.05 % LEL/K				
Sensitivity:	≤ ± 0.05 % LEL/K at 50 % LEL				
Influence of humidity (at 40°C	(;)				
Zero point:	≤ ± 0.03 % LEL/% RH				
Sensitivity:	≤ ± 0.03 % LEL/% RH at 50 % LEL				
Influence of pressure					
Zero point:	≤ ± 0.10 % LEL/kPa				
Sensitivity:	≤ ± 0.10 % LEL/kPa at 50 % LEL				
Long-term drift					
Zero point:	≤ ± 1 % LEL/month				
Sensitivity:	≤ ± 1 % LEL/month at 50 % LEL				
Effect of sensor poisons:	Halogenated hydrocarbons or volatile silicon, sulphur, heavy metal				
	compounds may damage the CatEx Sensor.				
	Hydrogen sulfide H_2S 1000 ppmh \leq ± 2 % of sensitivity				
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % sensitivity				
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 15 % sensitivity				
	After an exposure to 10 ppm HMDS in air for 6 hours the loss of				
	sensitivity is less than 50%				
Test gas:	approx. 2.5 Vol% CH ₄				
	approx. 0.9 Vol% C ₃ H ₈				

SPECIAL CHARACTERISTICS

Due to its special design, the DrägerSensor® CatEx SR (Shock Resistant) is particularly insensitive to shock loads. The shock resistance significantly exceeds the general standard requirements. In addition to this shock protection, it shows a good vapor measurement capability and is therefore suitable for the detection of combustible gases and vapors. It is ready for use very quickly, since a zero point and sensitivity adjustment for the %LEL measuring range can be carried out after approx. 60 seconds. In addition, the sensor has a very good long-term stability, low moisture influence and excellent poisoning resistance to sensor poisons such as siloxanes and hydrogen sulfide.

THE DETECTION OF OTHER GASES AND VAPORS THROUGH THE USE OF CROSS SENSITIVITIES FOR THE MEASUREMENT RANGE OF 0 TO 100 % LEL.

The specified values are typical values when adjusting with propane (C₃H₈) or methane (CH₄) and apply to new sensors with an accuracy of ±15%. Aging and sensor poisons can affect sensitivity ratios. The LEL according to ISO/IEC 80079-20-1:2017 were used. The table does not claim to be complete. The sensor can also be sensitive to other gases and vapors.

RELEVANT CROSS SENSITIVITIES

Gas/vapor	Chemical symbol	CAS-No.	Test gas koncentration	Reading dis	splayed in %LEL rated
	_		in Vol%	CH ₄	C₃H ₈
n-Butane	C ₄ H ₁₀	106-97-8	0.70	_ 21	48
Ethane	C ₂ H ₆	74-84-0	1.20	31	62
n-Heptane	C ₇ H ₁₆	142-82-5	0.43	17	34
n-Hexane	C ₆ H ₁₄	110-54-3	0.50	19	39
Hydrogen	H ₂	1333-74-0	2.00	44	85
Methane	CH ₄	74-82-8	2.20	_ 50	100
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	14	14
n-Octane	C ₈ H ₁₈	111-65-9	0.40	16	31
n-Pentane	C ₅ H ₁₂	109-66-0	0.55	18	37
Propane	C ₃ H ₈	74-98-6	0.85	24	50
Propene	C ₃ H ₆	115-07-1	1.00	27	55

NOTICE

Do not dispose of sensors in household waste. Sensors must be disposed of in accordance with local regulations. The product safety information sheet contains information on constituent substances (www.draeger.com).

DrägerSensor® CatEx 125 PR

Order no. 68 12 950

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am	no	yes	3 years	> 4 years	_
2500/5000	_				
Dräger X-am	no	yes	3 years	> 4 years	-
3500/8000					

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL (at calibration with methane)		
Resolution:	1 % LEL for measurement range 0 to 100 % LEL,		
	1 Vol% for measurement range 0 to 100 Vol% CH ₄ (methane)		
Measurement range:	0 to 100 % LEL		
	0 to 100 Vol% CH ₄ (methane) in Dräger X-am 5000, X-am 8000		
Ambient conditions			
Temperature:	−20 to 55 °C (−4 to 131 °F)		
Humidity:	10 to 95 % RH		
Pressure:	700 to 1,300 hPa		
Warm-up time:	≤ 3 minutes		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH METHANE IN AIR*:

Response time:		X-am 2500/5000	X-am 3500/8000	
	Diffusion mode (t ₅₀)	≤ 7 seconds	≤ 9 seconds	
	Diffusion mode (t ₉₀)	≤ 17 seconds	≤ 20 seconds	
	Pump mode (t ₅₀)	≤ 7 seconds	≤ 9 seconds	
	Pump mode (t ₉₀)	≤ 10 seconds	≤ 12 seconds	
Precision				
Zero point:	≤ ± 1 % LEL			
Sensitivity:	≤ ± 1 % LEL at 50 % L	EL		
Linearity error:	≤ ± 2 % LEL at 70 % L	EL		
Influence of temperature	_			
Zero point:	≤ ± 0.03 % LEL/K			
Sensitivity:	≤ ± 0.05 % LEL/K at 50 % LEL			
Influence of humidity (at 40°C)				
Zero point:	≤ ± 0.01 % LEL/% RH			
Sensitivity:	≤ ± 0.03 % LEL/% RH	at 50 % LEL		
Influence of pressure	X-am 2500/5000	X-	am 3500/8000	
Zero point:	≤ ± 0.30 %LEL/kPa	≤ :	± 0.03 % LEL/kPa	
Sensitivity:	≤ ± 0.30 % LEL/kPa	≤ :	± 0.10 % LEL/kPa	
	at 50 % LEL	at	50 % LEL	
Long-term drift				
Zero point:	≤ ± 1 % LEL/month			
Sensitivity:	≤ ± 2 % LEL/month at 50 % LEL			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH PROPANE IN AIR*:

Response time:		X-am 2500/5000	X-am 3500/8000	
	Diffusion mode (t ₅₀)	≤ 10 seconds	≤ 12 seconds	
	Diffusion mode (t ₉₀)	≤ 25 seconds	≤ 30 seconds	
	Pump mode (t ₅₀)	≤ 9 seconds	≤ 11 seconds	
	Pump mode (t ₉₀)	≤ 11 seconds	≤ 15 seconds	
Precision				
Zero point:	≤ ± 1 % LEL			
Sensitivity:	≤ ± 1 % LEL at 50 % L	EL		
Linearity error:	≤ ± 3 % LEL at 70 % L	EL		
Influence of temperature				
Zero point:	≤ ± 0.05 % LEL/K			
Sensitivity:	≤ ± 0.05 % LEL/K at 50 % LEL			
Influence of humidity (at 40°C)				
Zero point:	≤ ± 0.03 % LEL/% RH			
Sensitivity:	≤ ± 0.03 % LEL/% RH	at 50 % LEL		
Influence of pressure	X-am 2500/5000	Χ-	am 3500/8000	
Zero point:	≤ ± 0.30 %LEL/kPa	≤ ±	± 0.03 % UEG/kPa	
Sensitivity:	≤ ± 0.30 % LEL/kPa	≤ ±	± 0.10 % LEL/kPa	
	at 50 % LEL	at :	50 % LEL	
Long-term drift				
Zero point:	≤ ± 2 % LEL/month			
Sensitivity:	≤ ± 3 % LEL/month at 50 % LEL			

^{*} s. a. Notes on Approval 9033890 (X-am 2500/5000), 9033655 (X-am 3500/8000)

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 30 seconds (t ₉₀)		
Precision:	≤ ± 1 Vol%		
Linearity error:	≤ ± 5 Vol% at 0 to 50 Vol%		
	≤ ± 10% of measured value at 50 to 100 Vol%		
Long-term drift			
Zero point:	≤ ± 3 Vol%/month		
Precision:	≤ ± 3 Vol%/month at 50 Vol%		
Influence of temperature:	≤ ± 0.15 Vol%/K		
Influence of humidity:	≤ ± 0.15 Vol%/% RH at 40 °C		

NOTICE: Monitoring explosive mixtures in the range from 0 to 100% LEL in the measuring range up to 100 Vol% is only possible for devices that have an automatic range switchover. Heat conduction measurements are possible in the absence of oxygen, but the accuracy specifications in the range 0 to 5 Vol% here do not apply in this case.

This setting is not suitable for the monitoring of explosive mixtures in the measuring range of 0 to 100% LEL.

approx. 2 Vol% CH ₄ or 50 Vol% CH ₄			
Halogenated hydrocarbons or volatile silicon, sulphur, heavy metal			
compounds may damage the CatEx Sensor.			
Hydrogen sulphide H_2S 1000 ppmh \leq ± 2 % of measured value			
Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value			
Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 25 % of measured value			
After an exposure to 10 ppm HMDS in air for 5 hours the loss of			
sensitivity is less than 50%.			

SPECIAL CHARACTERISTICS

The DrägerSensor® CatEx 125 PR (Poison Resistant) is used to detect flammable gases and vapors. The detection of alkane from methane to nonane is certified for the use in the devices Dräger X-am 2500/5000 and Dräger X-am 3500/8000 (nonane-suitable pump adapter required) in accordance with EN 60079-29-1 and EN 50271. In addition, the sensor has very good long-term stability, hardly any influence of humidity and an excellent poisoning resistance to sensor poisons such as hydrogen sulfide and siloxanes.

DETECTING OTHER GASES AND VAPORS

The detection of other gases and vapors through the use of cross sensitivities for the measurement range of 0 to 100 % LEL. The values given are typical values when calibrated with methane (CH₄) and apply to new sensors. For methane, the LEL according to ISO/IEC 80079-20-1:2017 was used. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concentration in Vol%	Reading displayed in % LEL
Acetone	C ₃ H ₆ O	67-64-1	1.25	31
Acetic acid	C ₂ H ₄ O ₂	64-19-7	3.00	23
Acetylene	C ₂ H ₂	74-86-2	1.15	36
Ammonia	NH ₃	7664-41-7	7.70	57
Benzene	C ₆ H ₆	71-43-2	0.60	25
Butadiene -1,3	C ₄ H ₆	106-99-0	0.70	27
n-Butane	C ₄ H ₁₀	106-97-8	0.70	26
n-Butanol	C ₄ H ₁₀ O	71-36-3	0.70	20
2-Butanone	C ₄ H ₈ O	78-93-3	0.75	22
n-Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	0.60	17
Carbon monoxide	CO	630-08-0	5.45	32
Cyclohexane	C ₆ H ₁₂	110-82-7	0.50	20
Cyclopentane	C ₅ H ₁₀	287-92-3	0.70	27
Diethylamine	C ₄ H ₁₁ N	109-89-7	0.85	28
Diethyl ether	$(C_2H_5)_2O$	60-29-7	0.85	27
Ethane	C ₂ H ₆	74-84-0	1.20	35
Ethanol	C ₂ H ₆ O	64-17-5	1.55	33
Ethene	C ₂ H ₄	74-85-1	1.20	36
Ethyl acetate	C ₄ H ₈ O ₂	141-78-6	1.00	25
n-Heptane	C ₇ H ₁₆	142-82-5	0.40	17
n-Hexane	C ₆ H1 ₄	110-54-3	0.50	20
Hydrogen	H ₂	1333-74-0	2.00	49
Liquid petroleum gas**	LPG		0.70	22
Methane	CH ₄	74-82-8	2.20	50

Gas/vapor	Chemical symbol	CAS No.	Test gas concentration in Vol%	Reading displayed in % LEL
Methanol	CH ₄ O	67-56-1	3.00	40
1-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	107-98-2	0.90	21
Methyl tert-butyl ether (MTBE)	C ₅ H ₁₂ O	1634-04-4	0.80	25
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	14
n-Octane	C ₈ H ₁₈	111-65-9	0.40	17
n-Pentane	C ₅ H ₁₂	109-66-0	0.55	21
3-Pentanol	C ₅ H ₁₂ O	584-02-1	0.60	19
Propane	C ₃ H ₈	74-98-6	0.85	29
2-Propanol	C ₃ H ₈ O	67-63-0	1.00	27
Propene	C ₃ H ₆	115-07-1	1.00	35
Propylene oxide	C ₃ H ₆ O	75-56-9	0.95	25
Styrene	C ₈ H ₈	100-42-5	0.50	11
Toluene	C ₇ H ₈	108-88-3	0.50	20
o-Xylene	C ₈ H ₁₀	95-47-6	0.55	19

^{**} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.

The given values may fluctuate by ±30 %.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapours. Poisoning of the sensor may also alter the relative sensitivities for certain gases and vapours. After overstepping the measuring range there could be increased readings in the measuring range 0 to 100 %LEL. Calibrate the sensor, if necessary.

WEEE

Do not dispose the sensors in household waste. The sensors must be disposed in accordance with local regulations. Environmental and regulatory authorities and waste disposal companies provide information. Information on ingredients is included in the Product Safety Information Sheet (PSIS) available on www.draeger.com/sds.

DrägerSensor® CatEx 125 PR-Gas

Order no. 68 13 080

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 2500/5000	no	yes	3 years	> 4 years
Dräger X-am 8000	no	yes	3 years	> 4 years

MARKET SEGMENTS

Mining, telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2 % LEL (at calibration with methane)		
Resolution:	1.0% LEL for measuring range 0 to 100% LEL,		
	1.0 Vol% for measuring range 0 to 100 Vol% CH ₄ (methane)		
Measurement range:	0 to 100% LEL or 0 to 100 Vol% CH ₄ (methane) in Dräger		
	X-am 5000, x-am 8000		
Ambient conditions			
Temperature:	-20 to 55 °C (-4 to 131 °F)		
Humidity:	10 to 95 % RH		
Pressure:	700 to 1300 hPa		
Warm-up time:	≤ 3 minutes		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH METHANE IN AIR*:

Response time:		X-am 2500/5	000	X-am 8000
	Diffusion mode (t ₅₀)	≤ 6 seconds		≤ 8 seconds
	Diffusion mode (t ₉₀)	≤ 8 seconds		≤ 15 seconds
	Pump mode (t ₅₀)	≤ 6 seconds		≤ 8 seconds
	Pump mode (t ₉₀)	≤ 7 seconds		≤ 10 seconds
Precision				
Zero point:	≤ ± 1 % LEL			
Sensitivity:	≤ ± 1 % LEL at 50 % LE	EL		
Linearity error:	≤ ± 2 % LEL at 70 % LE	L		
Influence of temperature				
Zero point:	≤ ± 0.05 % LEL/K			
Sensitivity:	≤ ± 0.05 % LEL/K at 50	0 % LEL		
Influence of humidity (at 40°C)				
Zero point:	≤ ± 0.03 % LEL/% RH			
Sensitivity:	≤ ± 0.03 % LEL/% RH	at 50 % LEL		
Influence of pressure	X-am 2500/5000		X-am 8000)
Zero point:	≤ ± 0.30 %LEL/kPa		≤ ± 0.03 %	LEL/kPa
Sensitivity:	≤ ± 0.30 % LEL/kPa		\leq ± 0.10 %	LEL/kPa
	at 50 % LEL		at 50 % LE	L
Long-term drift				
Zero point:	≤ ± 1 % LEL/month			
Sensitivity:	≤ ± 1 % LEL/month at 5	0 % LEL		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH PROPANE IN AIR*:

Response time:		X-am 2500/5000	X-am 8000
	Diffusion mode (t ₅₀)	≤ 9 seconds	≤ 12 seconds
	Diffusion mode (t ₉₀)	≤ 18 seconds	≤ 29 seconds
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds
	Pump mode (t ₉₀)	≤ 10 seconds	≤ 13 seconds
Precision			
Zero point:	≤ ± 1 % LEL		
Sensitivity:	≤ ± 1 % LEL at 50 % L	EL	
Linearity error:	≤ ± 2 % LEL at 70 % L	EL	
Influence of temperature			
Zero point:	≤ ± 0.15 % LEL/K		
Sensitivity:	≤ ± 0.15 % LEL/K at 5	0 % LEL	
Influence of humidity (at 40°C)			
Zero point:	≤ ± 0.03 % LEL/% RH		
Sensitivity:	≤ ± 0.03 % LEL/% RH	at 50 % LEL	
Influence of pressure	X-am 2500/5000	X-a	m 8000
Zero point:	≤ ± 0.50 %LEL/kPa	≤ ±	0.10 % UEG/kPa
Sensitivity:	≤ ± 0.50 % LEL/kPa	≤ ±	0.10 % LEL/kPa
	at 50 % LEL	at 5	0 % LEL
Long-term drift			
Zero point:	≤ ± 3 % LEL/month		
Sensitivity:	≤ ± 3 % LEL/month at	50 % LEL	
			·

^{*} s. a. Notes on Approval 9033890 (X-am 2500/5000), 9033655 (X-am 8000)

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 VOL .- % CH4:

Response time:	≤ 35 seconds (t ₉₀)	
Precision:	≤ ± 1 Vol%	
Linearity error:	≤ ± 5 Vol% at 0 to 50 Vol%	
	≤ ± 10% of measured value at 50 to 100 Vol%	
Long-term drift		
Zero point:	≤ ± 3 Vol%/month	
Precision:	≤ ± 3 Vol%/month at 50 Vol%	
Influence of temperature:	≤ ± 0.3 Vol%/K	
Influence of humidity: $\leq \pm 0.2 \text{ Vol}\%/\% \text{ RH at } 40 ^{\circ}\text{C}$		

NOTICE: Monitoring explosive mixtures in the range from 0 to 100% LEL in the measuring range up to 100 Vol% is only possible for devices that have an automatic range switchover. Heat conduction measurements are possible in the absence of oxygen, but the accuracy specifications in the range 0 to 5 Vol% here do not apply in this case.

This setting is not suitable for the monitoring of explosive mixtures in the measuring range of 0 to 100% LEL.

Test gas:	approx. 2 Vol% CH ₄ or 50 Vol% CH ₄
Effect of sensor poisons:	Halogenated hydrocarbons or volatile silicon, sulphur, heavy metal
	compounds may damage the CatEx Sensor.
	Hydrogen sulphide H_2S 1000 ppmh \leq ± 2 % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 10 % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value
After an exposure to 10 ppm HMDS in air for 3 hours the lo	
	sensitivity is less than 40%.

SPECIAL CHARACTERISTICS

This sensor is optimized for the detection of methane. It has a response time (t_{90}) of less than 10 seconds. Due to the additional shock absorption of the pellistors, it is particularly resistant to shock. Provided with all the necessary approvals, this is a very robust sensor that can be used in both industrial and mining applications.

DETECTING OTHER GASES AND VAPORS

The detection of other gasea through the use of cross sensitivities for the measurement range of 0 to 100 % LEL. The values given are typical values when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. For methane, the LEL according to ISO/IEC 80079-20-1:2017 was used. The table does not claim to be complete. The sensor may also be sensitive to other gases.

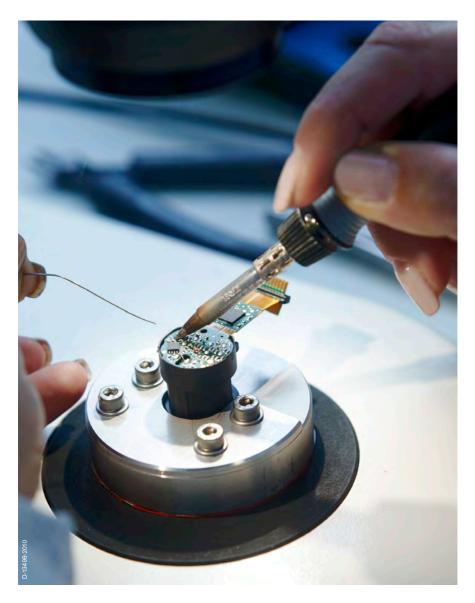
RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading displayed in % LEL
Acetylene (MTG)	C ₂ H ₂	74-86-2	1.15	32
n-Butane (MTG)	C ₄ H ₁₀	106-97-8	0.70	22
i-Butene (MTG)	C ₄ H ₈	115-11-7	0.80	23
Ethane (MTG)	C ₂ H ₆	74-84-0	1.20	33
Ethene (MTG)	C ₂ H ₄	74-85-1	1.20	30
Hydrogen (MTG)	H ₂	1333-74-0	2.00	44
Liquid petroleum gas**	LPG		0.70	22
Methane (MTG)	CH ₄	74-82-8	2.20	50
Methane***	CH ₄	74-82-8	2.20	50
n-Pentane	C ₅ H ₁₂	109-66-0	0.75	22
Propane (MTG)	C ₃ H ₈	74-98-6	0.85	28
Propene (MTG)	C ₃ H ₆	115-07-1	1.00	32

^{**} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.

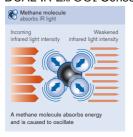
MTG = German abbreviation for measurement performance certificate.

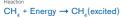
A metrological report is a verification and certification of the measuring function of a gas measuring device.


WEEE

Do not dispose the sensors in household waste. The sensors must be disposed in accordance with local regulations. Environmental and regulatory authorities and waste disposal companies provide information. Information on ingredients is included in the Product Safety Information Sheet (PSIS) available on www.draeger.com/sds.

^{***} The measuring gas «ch₄L» provides a higher resolution and is used for leak detection. It is recommended to re-calibrate the zero point in fresh air at the opprating site. The settings are optimized for the X-am 8000. With the unit [ppm], high gas concentrations cannot be shown on the X-am 5000 s display; the unit should be changed to [Vol%] or [%UEG].




5.4 Dräger infrared sensors

Every gas absorbs light in a particular way; some even absorb visible light (wavelength of 0.4 to 0.8 micrometers), which is why chlorine is yellowish green, bromine and nitrogen dioxide are brown, iodine vapor is violet, and so on - but unfortunately they are only visible in high (deadly) concentrations.

DUAL IR Ex/CO₂ Sensor

Hydrocarbons and carbon dioxide, on the other hand, absorb light in a certain wavelength range, (hydro carbons 3.3 to 3.5 $\mu m;$ CO $_2$ approx. 4 $\mu m)$ – and that can be utilized for detection purposes, since the main components of air (oxygen, nitrogen, and argon) do not absorb radiation in that range. In a container containing gaseous hydrocarbons such as methane or propane or carbon dioxide, the intensity of an incoming infrared light will be weakened, and the degree of this weakening is dependent on the concentration of gas. With the DrägerSensor Dual IR Ex/CO $_2$ a simultaneous measurement is possible.

Air: infrared light passes through without weakening – intensity remains the same Gas (e.g. methane): infrared light becomes weaker as it passes through – intensity drops in relation to the concentration of methane. This is the principle of an infrared measuring instrument that utilizes Dräger IR sensors. Flammable gases and vapors are mostly hydrocarbons, and hydrocarbons are almost always detectable by means of their typical IR absorption levels.

Functional principle: the ambient air to be monitored passes into the measuring cuvette by means of diffusion or through the use of a pump. The infrared transmitter produces broad-band radiation that passes through a window into the cuvette, where it is reflected off the mirrored walls and passes through another window, falling onto the double detector. This double detector consists of a measurement and a reference detector. If the gas mixture contains a percentage of e.g. hydrocarbons, then some of the radiation is absorbed and the measurement detector produces a reduced electrical signal. The signal from the reference detector remains unchanged. Fluctuations in the performance of the infrared transmitter, dirt on the mirror and windows, and interference from dust or aerosols in the ambient air have the same effect on both sensors, and are fully compensated.

DrägerSensor® Smart IR Ex

Order no. 68 10 460

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	5 years	> 5 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	3% LEL/0.1 Vol%		
Resolution:	0.5% LEL		
Measurement range:	0 to 100% LEL/0 to 100 Vol%		
	depending on the gas being measured		
Ambient conditions			
Temperature:	(-20 to 60)°C (-4 to 140)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 4 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH4 WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode ≤ 20 seconds (t ₅₀)	
	Diffusion mode ≤ 50 seconds (t ₉₀)	
	Pump mode ≤ 20 seconds (t ₅₀)	
	Pump mode ≤ 41 seconds (t ₉₀)	
Precision:	≤ ± 2.0% LEL methane at 50% LEL	
Linearity error, typical:	≤ ± 5% of measured value	
Long-term drift		
Zero point:	≤ ± 2.5% LEL methane/month	
Precision:	≤ ± 2.5% LEL methane/month at 50% LEL	
Influence of temperature		
Zero point:	≤ ± 0.05% LEL methane/K at (-20 to 60)°C (-4 to 140)°F	
Precision:	≤ ± 0.15% LEL methane/K at 50% LEL and (-20 to 60)°C	
	(-4 to 140)°F	
Influence of humidity, at 40 °C (10	04 °F) (0 to 95 % RH, non-condensing)	
Zero point:	≤ ± 0.05% LEL methane/% RH	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% C_3H_8 WHEN CALIBRATED WITH PROPANE IN AIR:

Precision:	≤ ± 1.0% LEL propane at 50% LEL		
Linearity error, typical:	≤ ± 4.0% of measured value		
Long-term drift			
Zero point:	≤ ± 1.0% LEL propane/month		
Sensitivity	≤ ± 2.0% LEL propane/month at 50% LEL		
Influence of temperature			
Zero point:	≤ ± 0.03% LEL propane/K		
Sensitivity	≤ ± 0.08% LEL propane/K		
Influence of humidity,			
at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	≤ ± 0.03% LEL propane/% RH		
Test gas:	2 Vol% CH ₄		
	0.9 Vol% C ₃ H ₈		

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring and Vol.-% monitoring for some gases. The sensor's database can contain up to 50 different gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASUREMENT RANGES:

Sensor precalibration

The sensor can be delivered with all the necessary calibration data available. The sensor's database can contain up to 50 different gases. The zero point and sensitivity are precalibrated in the sensor for methane (0 to 100% LEL) and propane (0 to 100% LEL). The Vol.-% and % LEL readings are differentiated by displaying the measured gas in upper- and lower-case letters (e.g. ch₄ for 0 to 100% LEL and CH₄ for 0 to 100 Vol.-%).

Gas	Data set name	Measurement range
n-butane	buta	0 to 100% LEL 2)
n-BUTANE	BUTA	0 to 100 Vol%
Ethene	c ₂ h ₄	0 to 100% LEL 2)
ETHENE	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
Liquid petroleum gas	LPG	0 to 100% LEL 2) /
	(50% propane + 50% butane)3)	0 to 100 Vol%
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄	0 to 100% LEL 2)
METHANE	CH ₄	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₈	0 to 100% LEL 2)
PROPANE	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL 2)

²⁾ LEL figures depend on country-specific standards.

³⁾ The figures in the table assume a composition of 50% propane and 50% butane.
In practice, the composition of LPG fluctuates, which can lead to increased measurement errors.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASUREMENT RANGE 0 TO 100% LEL:

Through the use of cross sensitivities when calibrated with propane (C_3H_8 , 100% LEL = 1.7 Vol.-%). The sensor can be used to detect the gases and vapors listed in the following table. The sensor must be configured to "Ex" measurement gas in the instrument. For example: if the instrument is subjected to 1.25 Vol.-% acetone (50% LEL), the instrument will show a reading of 19% LEL if configured to "Ex" measurement gas (calibration using 50% LEL / = 0.85 Vol.-% propane). Calibration using the target gas is preferable to calibration using a replacement gas.

Gas/vapor gas	Chemical	Test gas	Reading	Cross-	
	symbol	concentration	displayed in % LEL	sensitivity	
		in Vol%	(if calibrated to	factor	
			0.85 Vol%		
			propane)		
Acetone	CH ₃ COCH ₃	1.25	19	2.63	
Acetylene	C ₂ H ₂		not possible	_	
Benzene	C ₆ H ₆	0.6	11	4.44	
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	13	3.85	
Cyclohexane	C ₆ H ₁₂	_	on request	_	
Cyclopentane	C ₅ H ₁₀	0.7	52	0.96	
Dimethyl ether	$(C_2H_5)_2O$	1.35	62	0.81	
Ethane	C ₂ H ₆	1.35	76	0.66	
Ethanol	C ₂ H ₅ OH	1.75	64	0.78	
Ethene	C ₂ H ₄	1.15	9	5.56	
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.05	35	1.43	
Ethyl acrylate	C ₅ H ₈ O ₂	0.85	23	2.17	
i-butane	C ₄ H ₁₀	0.9	49	1.02	
i-butene	C ₄ H ₈	8.0	32	1.56	
Methanol	CH ₄ O	2.75	93	0.54	
Methyl chloride	CH ₃ CI	3.8	42	1.19	
Methylene chloride	CH ₂ Cl ₂	6.5	13	3.85	
Methyl ethyl ketone	C ₄ H ₈ O	0.9	28	1.79	
n-heptane	C ₇ H ₁₆	0.55	45	1.11	
n-hexane	C ₆ H ₁₄	0.5	42	1.19	
n-nonane	C ₉ H ₂₀	_	on request	-	
n-octane	C ₈ H ₁₈	0.4	32	1.56	
n-pentane	C ₅ H ₁₂	0.7	54	0.93	
Propane	C ₃ H ₈	0.85	50	1.00	
n-propanol	C ₃ H ₇ OH	0.6	40	1.25	
o-xylene	C ₆ H ₄ (CH ₃) ₂	0.5	13	3.85	
Toluene	C ₆ H ₅ CH ₃	0.6	19	2.63	

The specified values may deviate by up to ±30 %.

Calibration for a gas or vapor may result in increased linearity errors. The specified test-gas concentration corresponds to approximately 50 % of the lower explosion limit for the test gas in question. (Source: E. Brandes, W. Möller: Sicherheitstechnische Kenngrößen, PTB, ISBN 3-89701-745-8, Edition 2003)

DrägerSensor® IR EX

Order no. 68 51 881

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5600	no	yes	5 years	> 5 years
Dräger X-am 8000	no	yes	5 years	> 5 years

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1% LEL (when calibrated with CH ₄)			
Resolution:	1% LEL			
Measurement range:	e: 0 to 100 % LEL/ 0 to 100 Vol%			
	(depending on the respective target gas)			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(0 to 95)% RH			
Pressure:	(800 to 1100) hPa (in potentially explosive atmospheres)			
	(700 to 1300) hPa			
Warm-up time:	≤ 3 minutes			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:		X-am 8000				
	Diffusion mode (t ₅₀)	≤ 10 seconds	≤ 10 seconds			
	Diffusion mode (t ₉₀)	≤ 15 seconds	≤ 21 seconds			
	Pump mode (t ₅₀)	≤ 7 seconds	≤ 9 seconds			
	Pump mode (t ₉₀)	≤ 10 seconds	≤ 11 seconds			
Precision						
Zero point:	≤ ± 1.0% LEL					
Sensitivity:	≤ ± 2% LEL at 50% LEL					
Linearity error:	≤ ± 4 % of mesaured value	e or				
	\leq ± 1.5 % of the end of measurement range					
	(the larger value applies in each case)					
Influence of temperature (-20 to 5	0 °C)					
Zero point:	≤ ± 0.02% LE/K					
Sensitivity:	≤ ± 0.1% LEL/K at 50% LE	EL				
Influence of humidity, at 40 °C (10	4 °F) (0 to 95 % RH, non-c	ondensing)				
Zero point:	≤ ± 0.01% LEL/% RH					
Influence off pressure of the resp	ective measured value/hP	а				
	X-am 5600		X-am 8000			
Zero point:	≤±0.16 % (uncompensated) ≤±0.06 % (compensated)					
Long-term drift						
Zero point:	≤ ± 1% LEL/month	·				
Sensitivity:	≤ ± 3% LEL/month at 50 % LEL					

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH PROPANE IN AIR*:

Response time:	<u> </u>	X-am 5600	X-am 8000		
	Diffusion mode (t ₅₀)	≤ 12 seconds	≤ 14 seconds		
	Diffusion mode (t ₉₀)	≤ 40 seconds	≤ 57 seconds		
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds		
	Pump mode (t ₉₀)	≤ 13 seconds	≤ 15 seconds		
Precision					
Zero point:	≤ ± 1.0 % LEL				
Sensitivity:	≤ ± 2 % LEL at 50 % L	EL			
Linearity error:	≤ ± 3.0 % of mesaured value or				
	\leq ± 1.0 % of the end of	f measurement ra	nge		
	(the larger value applies in each case)				
Influence of temperature (-20) to 50 °C)				
Zero point:	≤ ± 0.06 % LEL/K				
Sensitivity:	≤ ± 0.13 % LEL/K at 5	0 % LEL			
Influence of humidity at 40 °C	C (104 °F) (0 to 95 % RH, no	n-condensing)			
Zero point:	≤ ± 0.01 % LEL/% RH				
Influence of pressure of the	respective measured value/	hPa			
	X-am 5600		X-am 8000		
Zero point:	≤±0.16 % (uncompens	sated)	≤±0.06 % (compensated)		
Long-term drift					
Zero point:	≤ ± 3% LEL/month				
Sensitivity:	≤ ± 4% LEL/month at 5	50 % LEL			

Test gas:	2,5 Vol% CH ₄ for measurement range up to 100 %LEL
	50 Vol% CH ₄ for measurement range up to 100 Vol.% CH ₄
	0,9 Vol% C ₃ H ₈ for measurement range up to 100 %LEL

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring and Vol.-% monitoring for some gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASURING RANGES:

Gas	Data set name	Measurement range**
n-butane	buta	0 to 100% LEL
n-BUTANE	BUTA	0 to 100 Vol%
Ethene	c2h4	0 to 100% LEL
ETHENE	C2H4	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL
Ex	Ex	0 to 100% LEL
JetFuel	JetF	0 to 100% LEL
Liquid Petroleum Gas ***	LPG	0 to 100 Vol%
Methane	ch4	0 to 100% LEL
METHANE	CH4	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL
n-pentane	Pent	0 to 100% LEL
Propane	c3h8	0 to 100% LEL
PROPANE	C3H8	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL

^{**} The LEL information is dependent on the applicable country-specific standards.

DETECTING OTHER GASES AND VAPORS

Detection of other gases and vapors for the measuring range 0% to 100% LEL with the DrägerSensor Dual IR Ex/CO₂ ES or DrägerSensor IR Ex ES via cross-sensitivities used for technical measurements when calibrated with propane (C₃H₈, 100 % LEL = 1.7 Vol.%. Always observe these values for this application). The sensor can be used to detect the gases and vapors mentioned in the table. For this purpose, the sensor in the device must be configured to the target gas "Ex". The specified values apply to 20 $^{\circ}$ C and may vary by \pm 30 %. Calibration to the gas or the vapor can cause increased linearity errors.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading dis- played in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
Acetone	C ₃ H ₆ O	67-64-1	1.25	18	2.78
Acetylene	C ₂ H ₂	74-86-2		not possible	_
Benzene	C ₆ H ₆	71-43-2	0.60	20	2.50
Butadiene -1,3	C ₄ H ₆	106-99-0	0.70	20	2.50
i-Butane	(CH ₃) ₃ CH	75-28-5	0.75	41	1.22
n-Butane	C ₄ H ₁₀	106-97-8	0.70	42	1.19
n-Butanol	C ₄ H ₁₀ O	71-36-3	0.85	25	2.00
2-Butanon (MEK)	C ₄ H ₈ O	78-93-3	0.75	22	2.27

^{***} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading dis- played in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
i-Butene	C ₄ H ₈	115-11-7	0.80	31	1.61
n-Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	0.60	20	2.50
Cyclohexane	C ₆ H ₁₂	110-82-7	0.50	15	3.33
Cyclopentane	C ₅ H ₁₀	287-92-3	0.70	47	1.06
Diethylamine	C ₄ H ₁₁ N	109-89-7	0.85	44	1.14
Diethyl ether	(C ₂ H ₅) ₂ O	60-29-7	0.85	46	1.09
Dimethyl ether	C ₂ H ₆ O	115-10-6	1.35	51	0.98
Ethane	C ₂ H ₆	74-84-0	1.20	65	0.77
Ethanol	C ₂ H ₆ O	64-17-5	1.55	41	1.22
Ethene	C ₂ H ₄	74-85-1	1.20	15	3.33
Ethyl acetate	C ₄ H ₈ O ₂	141-78-6	1.00	35	1.43
Ethyl acrylate	C ₅ H ₈ O ₂	140-88-5	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	142-82-5	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	110-54-3	0.50	34	1.47
Methane	CH ₄	74-82-8	2.20	37	1.35
Methanol	CH ₄ O	67-56-1	3.00	92	0.54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	107-98-2	0.90	26	1.92
Methyl choride	CH₃CI	74-87-3	3.80	47	1.06
Methylene chloride	CH ₂ Cl ₂	75-09-2	6.50	20	2.50
Methyl tert-butyl ether (MTBE)	C ₅ H ₁₂ O	1634-04-4	0.80	59	0.85
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	on request	_
n-Octane	C ₈ H ₁₈	111-65-9	0.40	20	2.50
n-Pentane	C ₅ H ₁₂	109-66-0	0.55	36	1.39
Propane	C ₃ H ₈	74-98-6	0.85	50	1.00
n-Propanol	C ₃ H ₈ O	71-23-8	1.05	40	1.25
Propene	C ₃ H ₆	115-07-1	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	75-56-9	0.95	49	1.02
Toluene	C ₇ H ₈	108-88-3	0.50	19	2.63
o-Xylene	C ₈ H ₁₀	95-47-6	0.50	11	4.55

f = Specifications relate to the respective test gas concentration and the corresponding LEL.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

DrägerSensor® Smart ID CO.

DragerSei	nsor® S	Sor® Smart IR CO ₂ Order no. 68 10					
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter		
Dräger X-am 7000	yes	yes	5 years	> 5 years			
MARKET SEGMI	ENTS						
		0 0 1	ply companie	es, refineries, chemical	industry, mining,		
landfills, biogas pla	ants, tunneling						
TECHNICAL SPI	ECIFICATION	IS					
Detection limit:		0.01 Vol%					
Resolution:		0.01 Vol% CO	O_2				
Measurement rang	e:	0 to 5 Vol% (CO ₂				
Ambient conditions	5						
Temperature:	Temperature: (-20 to 60)°C (-4 to 140)°F						
Humidity:		(10 to 95)% RI	Н				
Pressure:		(700 to 1,300)	hPa				
Warm-up time:		≤ 4 minutes					
FOR THE MEAS	UREMENT RA	ANGE 0 TO 5	VOL% CC	02			
Response time		Diffusion mode	e ≤ 20 secon	ds (t ₅₀)			
		Diffusion mode \leq 45 seconds (t_{90}/t_{10})					
		Pump mode ≤ 20 seconds (t ₅₀)					
		Pump mode ≤ 50 seconds (t ₉₀ /t ₁₀)					
Precision:		≤ ± 0.06 Vol% CO ₂ at 2.5 Vol%					
Linearity error, typi	cal:	> 0 to ≤ 1 Vol% CO ₂ <± 1 % of end of measuring range					
		> 1 to \leq 4 Vol% CO ₂ <± 5 % of the measured value					
		$>$ 4 to \leq 5 Vol% CO $_2$ <± 10 % of end of measuring range					
Long-term drift							
Zero point:		≤ ± 0.004 Vol.	-% CO ₂ /mor	nth			
Precision:		≤ ± 3% of mea	sured value/	month at 2.5 Vol%			
Influence of tempe	rature						
Zero point: $\leq \pm 0.002$			002 Vol% CO ₂ /K at (-20 to 60)°C (-4 to 140)°F				

Influence of humidity, at 40°C

(104 °F)

Precision:

(0 to 95% RH, non-condensing)

 \leq ± 0.02 Vol.-% CO₂ Zero point: Test gas: 0 to 5 Vol.-% CO₂

(-4 to 140)°F

 \leq ± 0.4% of measured value/K at 2.5 Vol.-% and (-20 to 60)°C

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide inside closed spaces, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

DrägerSensor® Smart IR CO₂ HC

Test gas: 50 Vol.-% CO₂

Order no. 68 10 599

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter		
Dräger X-am 7000	yes	yes	5 years	> 5 years	_		
MARKET SEGMI	ENTS						
Biogas, process ga	as						
TECHNICAL SPI	ECIFICATION	IS					
Detection limit:		0.4 Vol%					
Resolution:		0.2 Vol% CO	2				
Measurement rang	e:	0 to 100 Vol%	6 CO ₂				
Ambient conditions	S						
Temperature:	mperature: (-20 to 60)°C (-4 to 140)°F						
Humidity:		(10 to 95)% RI	Н				
Pressure:		(700 to 1,300) hPa					
Warm-up time:		≤ 4 minutes					
-							
FOR THE MEAS	UREMENT RA	ANGE 0 TO 10	00 VOL%	CO ₂			
Response time:		Diffusion mode	e ≤ 20 secon	ds (t ₅₀)			
		Diffusion mode	e ≤ 65 secon	ds (t ₉₀)			
		Pump mode ≤	20 seconds	(t ₅₀)			
		Pump mode ≤	65 seconds	(t ₉₀)			
Precision:		≤ ± 2.0 Vol%	CO ₂ at 50 V	/ol%			
Linearity error, typi	cal:	≤ ± 1 Vol% C	O_2 or $\leq \pm 5\%$	of measured value (which	chever is higher)		
Long-term drift							
Zero point:		≤ ± 0.2 Vol%	CO ₂ /month				
Precision:		≤ ± 3% of measured value/month at 50 Vol%					
Influence of tempe	rature						
Zero point:		≤ ± 0.004 Vol.	-% CO ₂ /K at	(-20 to 60)°C (-4 to 14	40)°F		
Precision:		≤ ± 0.4% of m	easured value	e/K at 50 Vol% and (-:	20 to 60)°C		
	(-4 to 140)°F						
Influence of humidit	ty, at 40 °C (104	°F) (0 to 95 %	RH, non-con	densing)			
Zero point:		≤ ± 0.5 Vol%	CO ₂				
		50 V L W 00					

This sensor is especially suitable if you need to measure high concentrations of CO_2 in process gas, for example. CO_2 concentrations of up to 100 Vol.-% can be detected reliably with this sensor. Other qualities that distinguish this sensor are low cross-sensitivities, long-term stability, and minimal maintenance.

DrägerSensor® IR CO₂ ES

Order no. 68 51 882

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5600	no	yes	5 years	> 5 years
Dräger X-am 8000	no	yes	5 years	> 5 years

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	0.01 Vol%			
Resolution:	0.01 Vol% or 50 ppm (depending on set unit)			
Measurement range:	0 to 5 Vol%			
Ambient conditions				
Temperature:	(-20 to 50) °C (-4 to 122) °F			
Humidity:	(0 to 95) % r. F.			
Pressure:	(700 to 1300) hPa			
Warm-up time:	≤ 3 minutes			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2 WHEN CALIBRATED WITH 2.0 VOL.-% CARBON DIOXIDE IN AIR*:

Response time:		X-am 5600	X-am 8000			
	Diffusion mode (t ₅₀)	≤ 15 seconds	≤ 14 seconds			
	Diffusion mode (t ₉₀)	≤ 31 seconds	≤ 48 seconds			
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds			
	Pump mode (t ₉₀)	≤ 11 seconds	≤ 14 seconds			
Precision						
Zero point:	≤ ± 0.01 Vol%					
Sensitivity:	≤ ± 0.08 Vol% at 2.5 \	/ol%				
Linearity error:	≤ ± 10 % of measured value or					
	\leq ± 1.5 % of the end of	≤ ± 1.5 % of the end of measurement range				
Influence of temperature (-	20 to 50 °C)					
Zero point:	≤ ± 0.0002 Vol%/K	≤ ± 0.0002 Vol%/K				
Sensitivity:	≤ ± 0.015 % Vol%/K at 2.5 Vol%					
Influence of humidity, at 40	°C (104 °F) (0 to 95 % RH, no	n-condensing)				
Zero point:	≤ ± 0.0001 Vol%/ % R	RH				
Influence of pressure of the	e respective measured value/h	nPa				
	X-am 5600		X-am 8000			
Zero point:	≤ ± 0.15 % (uncomper	$\leq \pm 0.15 \%$ (uncompensated) $\leq \pm 0.09 \%$ (compe				
Long-term drift						
Zero point:	± 0.005 Vol%/month	± 0.005 Vol%/month				
Sensitivity:	± 0.1 Vol%/6 months a	± 0.1 Vol%/6 months at 2.5 Vol%				
Test gas	2 Vol% CO ₂	2 Vol% CO ₂				

^{*} s. a. Notes on Approval 9033890 (X-am 5600), 9033655 (X-am 8000)

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide in indoor areas, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

DrägerSensor® Dual IR Ex/CO₂ ES

Order no. 68 51 880

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5600	no	yes	5 years	> 5 years
Dräger X-am 8000	no	yes	5 years	> 5 years

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1 % LEL for IR Ex (when calibrated with CH ₄)		
	0.01 Vol% CO ₂ for IR CO ₂		
Resolution:	1 % LEL for IR Ex		
	0.01 Vol% CO ₂ or 50 ppm CO ₂ (depending on set unit)		
Measurement range:	0 to 100 % LEL/ 0 to 100 Vol% (depending on the respective target gas)		
	0 to 5 Vol% CO ₂		
Ambient conditions			
Temperature:	(-20 to 50) °C (-4 to 122) °F		
Humidity:	(0 to 95) % RH		
Pressure:	(800 to 1100) hPa (in potentially explosive atmospheres)		
	(700 to 1300) hPa		
Warm-up time:	≤ 3 minutes		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL OR 0 TO 4.4 VOL.% $\mathrm{CH_4}$ WHEN CALIBRATED WITH 2.5 VOL.% METHANE IN AIR*:

Response time:		X-am 5600	X-am 8000			
	Diffusion mode (t ₅₀)	≤ 10 seconds	≤ 10 seconds			
	Diffusion mode (t ₉₀)	≤ 15 seconds	≤ 21 seconds			
	Pump mode (t ₅₀)	≤ 7 seconds	≤ 9 seconds			
	Pump mode (t ₉₀)	≤ 10 seconds	≤ 11 seconds			
Precision						
Zero point:	≤ ± 1.0 % LEL					
Sensitivity:	≤ ± 2 % LEL at 50 % LE	L				
Linearity error:	≤ ± 4 % of mesaured value or					
	\leq ± 1.5 % of the end of	≤ ± 1.5 % of the end of measurement range				
	(the larger value applies	(the larger value applies in each case)				
Influence of temperature	e (-20 to 50 °C)					
Zero point:	≤ ± 0.02 % LEL/K	≤ ± 0.02 % LEL/K				
Sensitivity:	≤ ± 0.1 % LEL/K at 50 9	≤ ± 0.1 % LEL/K at 50 % LEL				
Influence of humidity, at	40 °C (104 °F) (0 to 95 % RH, nor	n-condensing)				
Zero point:	≤ ± 0.01 % LEL/% RH					
Influence of pressure of	the respective measured value/h	ıPa				
	X-am 5600		X-am 8000			
Zero point:	≤ ± 0.16 % (uncomper	\leq ± 0.16 % (uncompensated) \leq ± 0.06 % (compensated)				
Long-term drift						
Zero point:	≤ ± 1 % LEL/month	≤ ± 1 % LEL/month				
Sancitivity:	< + 3 % LFL /month at 5	50 % LFI				

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL OR 0 TO 1.7 VOL.% C_3H_8 WHEN CALIBRATED WITH 0.9 VOL.% PROPANE IN AIR*:

•					
Response time:		X-am 5600	X-am 8000		
	Diffusion mode (t ₅₀)	≤ 12 seconds	≤ 14 seconds		
	Diffusion mode (t ₉₀)	≤ 40 seconds	≤ 57 seconds		
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds		
	Pump mode (t ₉₀)	≤ 13 seconds	≤ 15 seconds		
Precision					
Zero point:	≤ ± 1.0 % LEL				
Sensitivity:	≤ ± 2 % LEL at 50 % LE	EL			
Linearity error:	≤ ± 3.0 % of mesaured	l value or			
	\leq ± 1.0 % of the end of	≤ ± 1.0 % of the end of measurement range			
	(the larger value applies	(the larger value applies in each case)			
Influence of temperature ((-20 to 50 °C)				
Zero point:	≤ ± 0.06 % LEL/K	≤ ± 0.06 % LEL/K			
Sensitivity:	≤ ± 0.13 % LEL/K at 50	≤ ± 0.13 % LEL/K at 50 % LEL			
Influence of humidity, at 4	0 °C (104 °F) (0 to 95 % RH, no	n-condensing)			
Zero point:	≤ ± 0.01 % LEL/% RH				
Influence of pressure of the	ne respective measured value/h	nPa			
	X-am 5600		X-am 8000		
Zero point:	≤ ± 0.16 % (uncomper	nsated)	≤ ± 0.06 % (compensated)		
Long-term drift					
Zero point:	≤ ± 3 % LEL/month				
Sensitivity:	≤ ± 4 % LEL/month at §	≤ ± 4 % LEL/month at 50 % LEL			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% ${\rm CO_2}$ WHEN CALIBRATED WITH 2.0 VOL.-% CARBON DIOXIDE IN AIR*:

Response time:		X-am 5600	X-am 8000		
	Diffusion mode (t ₅₀)	≤ 15 seconds	≤ 14 seconds		
	Diffusion mode (t ₉₀)	≤ 31 seconds	≤ 48 seconds		
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds		
	Pump mode (t ₉₀)	≤ 11 seconds	≤ 14 seconds		
Precision					
Zero point:	≤ ± 0.01 Vol%				
Sensitivity:	≤ ± 0.08 Vol% at 2.5 V	ol%			
Linearity error: $\leq \pm 10 \%$ of measured value or					
	≤ ± 1.5 % of the end of measurement range				
	(the larger value applies	in each case)			
Influence of temperature (-20 to	50 °C)				
Zero point:	≤ ± 0.0002 Vol%/K				
Sensitivity:	≤ ± 0.015 % Vol%/K at 2.5 Vol%				
Influence of humidity, at 40 °C (1	04 °F) (0 to 95 % RH, nor	-condensing)			
Zero point:	≤±0.0001 Vol%/ % RH				
Influence of pressure of the resp	ective measured value/h	Pa			
	X-am 5600		X-am 8000		
Zero point:	≤ ± 0.15 % (uncompen	sated)	≤ ± 0.09 % (compensated)		

Long-term drift	
Zero point:	± 0.005 Vol%/month
Sensitivity:	± 0.1 Vol%/6 months at 2.5 Vol%

^{*} s. a. Notes on Approval 9033890 (X-am 5600), 9033655 (X-am 8000)

Test gases	2.5 Vol% CH ₄ for measurement range up to 100 %LEL
rest gases	4
	50 Vol% CH ₄ for measurement range up to 100 Vol% CH ₄
	0.9 Vol% C ₃ H ₈ for measurement range up to 100 %LEL
	2 Vol% CO ₂ for measurement range up to 5 Vol% CO ₂

This sensor allows a measurement of hydrocarbons (gases and vapors) and carbon dioxide simultaneously with just one sensor. As with all other IR sensors, it requires little maintenance, has a high level of long-term stability, and is highly resistant to poisoning.

COMPATIBLE GASES AND MEASUREING RANGES

Gas	Data set name	Measurement range **
n-Butane	buta	0 to 100 % LEL
n-BUTANE	BUTA	0 to 100 Vol%
Ethene	c2h4	0 to 100 % LEL
ETHENE	C2H4	0 to 100 Vol%
Ethanol	EtOH	0 to 100 % LEL
Ex	Ex	0 to 100 % LEL
JetFuel	JetF	0 to 100 % LEL
Liquid Petroleum Gas ***	LPG	0 to 100 Vol%
Methane	ch4	0 to 100 % LEL
METHANE	CH4	0 to 100 Vol%
n-Nonane	Nona	0 to 100 % LEL
n-Pentane	Pent	0 to 100 % LEL
Propane	c3h8	0 to 100 % LEL
PROPANE	C3H8	0 to 100 Vol%
Toluene	Tolu	0 to 100 % LEL

^{**} The LEL information is dependent on the applicable country-specific standards.

DETECTING OTHER GASES AND VAPORS

Detection of other gases and vapors for the measuring range 0% to 100% LEL with the DrägerSensor Dual IR Ex/CO2 ES or DrägerSensor IR Ex ES via cross-sensitivities used for technical measurements when calibrated with propane (C₃H₈, 100 % LEL = 1.7 Vol.%. Always observe these values for this application). The sensor can be used to detect the gases and vapors mentioned in the table. For this purpose, the sensor in the device must be configured to the target gas "Ex". The specified values apply to 20 °C and may vary by ± 30 %. Calibration to the gas or the vapor can cause increased linearity errors.

^{***} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading dis- played in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
Acetone	C ₃ H ₆ O	67-64-1	1.25	18	2.78
Acetylene	C ₂ H ₂	74-86-2		not possible	
Benzene	C ₆ H ₆	71-43-2	0.60	20	2.50
Butadiene -1,3	C ₄ H ₆	106-99-0	0.70	20	2.50
i-Butane	(CH ₃) ₃ CH	75-28-5	0.75	41	1.22
n-Butane	C ₄ H ₁₀	106-97-8	0.70	42	1.19
n-Butanol	C ₄ H ₁₀ O	71-36-3	0.85	25	2.00
2-Butanon (MEK)	C ₄ H ₈ O	78-93-3	0.75	22	2.27
i-Butene	C ₄ H ₈	115-11-7	0.80	31	1.61
n-Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	0.60	20	2.50
Cyclohexane	C ₆ H ₁₂	110-82-7	0.50	15	3.33
Cyclopentane	C ₅ H ₁₀	287-92-3	0.70	51	1.06
Diethylamine	C ₄ H ₁₁ N	109-89-7	0.85	44	1.14
Diethyl ether	(C ₂ H ₅) ₂ O	60-29-7	0.85	46	1.09
Dimethyl ether	C ₂ H ₆ O	115-10-6	1.35	47	0.98
Ethane	C ₂ H ₆	74-84-0	1.20	65	0.77
Ethanol	C ₂ H ₆ O	64-17-5	1.55	41	1.22
Ethene	C ₂ H ₄	74-85-1	1.20	15	3.33
Ethyl acetate	C ₄ H ₈ O ₂	141-78-6	1.00	35	1.43
Ethyl acrylate	C ₅ H ₈ O ₂	140-88-5	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	142-82-5	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	110-54-3	0.50	34	1.47
Methane	CH ₄	74-82-8	2.20	37	1.35
Methanol	CH ₄ O	67-56-1	3.00	92	0.54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	107-98-2	0.90	26	1.92
Methyl choride	CH₃CI	74-87-3	3.80	47	1.06
Methylene chloride	CH ₂ Cl ₂	75-09-2	6.50	20	2.50
Methyl tert-butyl ether (MTBE)	C ₅ H ₁₂ O	1634-04-4	0.80	59	0.85
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	on request	_
n-Octane	C ₈ H ₁₈	111-65-9	0.40	20	2.50
n-Pentane	C ₅ H ₁₂	109-66-0	0.55	36	1.39
Propane	C ₃ H ₈	74-98-6	0.85	50	1.00
n-Propanol	C ₃ H ₈ O	71-23-8	1.05	40	1.25
Propene	C ₃ H ₆	115-07-1	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	75-56-9	0.95	49	1.02
Toluene	C ₇ H ₈	108-88-3	0.50	19	2.63
o-Xylene	C ₈ H ₁₀	95-47-6	0.50	11	4.55

f = Specifications relate to the respective test gas concentration and the corresponding LEL.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

DrägerSensor® Dual IR Ex/CO₂ HC

Order no. 68 00 276

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 8000	no	yes	5 years	> 5 years

MARKET SEGMENTS

Mining, landfills, biogas plants

TECHNICAL SPECIFICATIONS

Detection limit:	1 % LEL for IR Ex (when calibrated with CH ₄)		
	0.2 Vol% CO ₂ for IR CO ₂		
Resolution:	1 % UEG for Ex		
	0.1 Vol% CO ₂		
Measurement range:	0 to 100 % UEG/ 0 to 100 Vol%		
	(depending on the respective target gas)		
	0 to 100 Vol% CO ₂		
Ambient conditions			
Temperature:	(-20 to 50 °C (-4 to 122 °F)		
Humidity:	0 to 90 % RH		
Pressure:	(800 to 1100) hPa (in potentially explosive atmospheres)		
	(700 to 1300) hPa		
Warm-up time:	≤ 3 minutes		

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL OR 0 TO 4.4 VOL.% CH₄ WHEN CALIBRATED WITH 2.5 VOL.% METHANE IN AIR:

Response time:	Diffusion mode (t ₅₀)	≤ 10 seconds			
	Diffusion mode (t ₉₀)	≤ 21 seconds			
	Pump mode (t ₅₀)	≤ 9 seconds			
	Pump mode (t ₉₀)	≤ 11 seconds			
Precision					
Zero point:	≤ ± 1.0 % LEL				
Sensitivity:	≤ ± 2 % LEL at 50 % LE	EL .			
Linearity error:	≤ ± 4 % of mesaured va	lue or			
	\leq ± 1.5 % of the end of	≤ ± 1.5 % of the end of measurement range			
	(the larger value applies	(the larger value applies in each case)			
Influence of temperature	e (-20 to 50 °C)				
Zero point:	≤ ± 0.02 % LEL/K				
Sensitivity:	≤ ± 0.1 % LEL/K at 50 %	≤ ± 0.1 % LEL/K at 50 % LEL			
Influence of humidity, at	40 °C (104 °F) (0 to 95 % RH, nor	n-condensing)			
Zero point:	≤ ± 0.01 % LEL/% RH				
Influence of pressure of	the respective measured value/h	Pa .			
Zero point:	≤ ± 0.06 % (compensat	red)			
Long-term drift					
Zero point:	≤ ± 1 % LEL/month	·			
Sensitivity:	≤ ± 3 % LEL/month at 5	50 % LEL			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL OR 0 TO 1.7 VOL.% C_3H_8 WHEN CALIBRATED WITH 0.9 VOL.% PROPANE IN AIR:

Response time:	Diffusion mode (t ₅₀)	≤ 14 seconds			
	Diffusion mode (t ₉₀)	≤ 57 seconds			
	Pump mode (t ₅₀)	≤ 10 seconds			
	Pump mode (t ₉₀)	≤ 15 seconds			
Precision					
Zero point:	≤ ± 1.0 % LEL				
Sensitivity:	≤ ± 2 % LEL at 50 % LE	L			
Linearity error:	≤ ± 3.0 % of mesaured	≤ ± 3.0 % of mesaured value or			
	\leq ± 1.0 % of the end of r	≤ ± 1.0 % of the end of measurement range			
	(the larger value applies	(the larger value applies in each case)			
Influence of temperature	(-20 to 50 °C)				
Zero point:	≤ ± 0.06 % LEL/K				
Sensitivity:	≤ ± 0.13 % LEL/K at 50	≤ ± 0.13 % LEL/K at 50 % LEL			
Influence of humidity, at 4	0 °C (104 °F) (0 to 95 % RH, nor	n-condensing)			
Zero point:	≤ ± 0.01 % LEL/% RH				
Influence of pressure of t	he respective measured value/h	Pa			
Zero point:	≤ ± 0.06 % (compensate	ed)			
Long-term drift					
Zero point:	≤ ± 3 % LEL/month				
Sensitivity:	≤ ± 4 % LEL/month at 5	0 % LEL			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CO $_2$ WHEN CALIBRATED WITH MIT 50 VOL.-% CARBON DIOXIDE IN NITROGEN:

Response time:	Diffusion mode (t ₅₀)	≤ 15 seconds			
	Diffusion mode (t ₉₀)	≤ 55 seconds			
	Pump mode (t ₅₀)	≤ 13 seconds			
	Pump mode (t ₉₀)	≤ 20 seconds			
Precision					
Zero point:	≤ ± 0.05 Vol%				
Sensitivity:	≤ ± 0.5 Vol% at 50 Vo	1%			
Linearity error:	\leq ± 1.0 Vol% or \leq ± 5 % of the end of measurement range				
	(the larger value applies	(the larger value applies in each case)			
Influence of temperature (20 to 50 °C)				
Zero point:	≤ ± 0.008 Vol%/K				
Sensitivity:	≤ ± 0.4 % Vol%/K at 5	≤ ± 0.4 % Vol%/K at 50 Vol%			
Influence of humidity, at 40	0 °C (104 °F) (0 to 95 % RH, no	n-condensing)			
Zero point:	≤ ± 0.001 Vol%/ % RF	1			
Influence of pressure of th	e respective measured value/h	nPa			
Zero point:	≤ ± 0.09 % (compensat	≤ ± 0.09 % (compensated)			
Long-term drift					
Zero point:	≤ ± 0.05 Vol%/month	≤ ± 0.05 Vol%/month			
Sensitivity:	≤ ± 2 Vol%/month at 5	≤ ± 2 Vol%/month at 50 Vol%			
·		·			

Test gases	2.5 Vol% CH ₄ for measurement range up to 100 %LEL
	50 Vol% CH ₄ for measurement range up to Vol% CH ₄
	0.9 Vol% C ₃ H ₈ for measurement range up to 100 %LEL
	50 Vol% CO_2 for measurement range up to 100 Vol% CO_2
	Biogas 60 Vol% CH ₄ /40 Vol% CO ₂

This sensor allows a measurement of hydrocarbons (gases and vapors) and carbon dioxide simultaneously with just one sensor. As with all other IR sensors, it requires little maintenance, has a high level of long-term stability, and is highly resistant to poisoning. CO₂ concentrations of up to 100% by volume can be reliably detected with this sensor. As with all other IR sensors, it requires little maintenance, has a high level of long-term stability, and is highly resistant to poisoning.

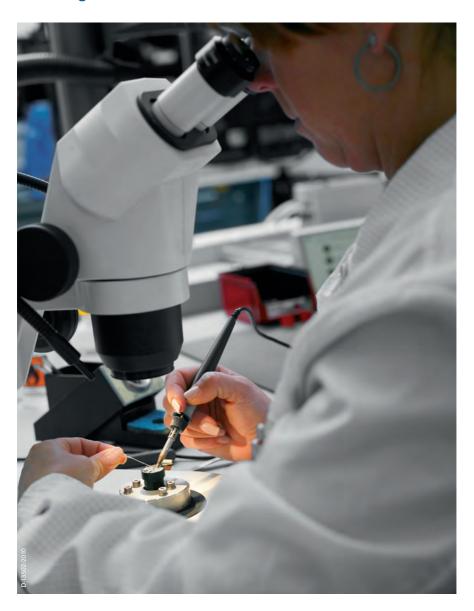
Gas	Data set name	Measurement range **
n-Butane	buta	0 to 100 % LEL 1)
n-BUTANE	BUTA	0 to 100 Vol%
Ethene	c2h4	0 to 100 % LEL 1)
ETHENE	C2H4	0 to 100 Vol%
Ethanol	EtOH	0 to 100 % LEL 1)
Ex	Ex	0 to 100 % LEL
JetFuel	JetF	0 to 100 % LEL 1)
Liquid Petroleum Gas ***	LPG	0 to 100 Vol%
Methane	ch4	0 to 100 % LEL 1)
METHANE	CH4	0 to 100 Vol%
n-Nonane	Nona	0 to 100 % LEL 1)
n-Pentane	Pent	0 to 100 % LEL 1)
Propane	c3h8	0 to 100 % LEL 1)
PROPANE	C3H8	0 to 100 Vol%
Toluene	Tolu	0 to 100 % LEL 1)

^{**} The LEL information is dependent on the applicable country-specific standards.

DETECTING OTHER GASES AND VAPORS

Detection of other gases and vapors for the measuring range 0% to 100% LEL with the DrägerSensor Dual IR Ex/CO₂ HC via cross-sensitivities used for technical measurements when calibrated with propane (C₃H₈, 100 % LEL = 1.7 Vol.%. Always observe these values for this application). The sensor can be used to detect the gases and vapors mentioned in the table. For this purpose, the sensor in the device must be configured to the target gas "Ex". The specified values apply to 20 °C and may vary by ± 30 %. Calibration to the gas or the vapor can cause increased linearity errors.

^{***} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.


RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading dis- played in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
Acetone	C ₃ H ₆ O	67-64-1	1.25	18	2.78
Acetylene	C ₂ H ₂	74-86-2		not possible	
Benzene	C ₆ H ₆	71-43-2	0.60	20	2.50
Butadiene -1,3	C ₄ H ₆	106-99-0	0.70	20	2.50
i-Butane	(CH ₃) ₃ CH	75-28-5	0.75	41	1.22
n-Butane	C ₄ H ₁₀	106-97-8	0.70	42	1.19
n-Butanol	C ₄ H ₁₀ O	71-36-3	0.85	25	2.00
2-Butanon (MEK)	C ₄ H ₈ O	78-93-3	0.75	22	2.27
i-Butene	C ₄ H ₈	115-11-7	0.80	31	1.61
n-Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	0.60	20	2.50
Cyclohexane	C ₆ H ₁₂	110-82-7	0.50	15	3.33
Cyclopentane	C ₅ H ₁₀	287-92-3	0.70	47	1.06
Diethylamine	C ₄ H ₁₁ N	109-89-7	0.85	44	1.14
Diethyl ether	(C ₂ H ₅) ₂ O	60-29-7	0.85	46	1.09
Dimethyl ether	C ₂ H ₆ O	115-10-6	1.35	51	0.98
Ethane	C ₂ H ₆	74-84-0	1.20	65	0.77
Ethanol	C ₂ H ₆ O	64-17-5	1.55	41	1.22
Ethene	C ₂ H ₄	74-85-1	1.20	15	3.33
Ethyl acetate	C ₄ H ₈ O ₂	141-78-6	1.00	35	1.43
Ethyl acrylate	C ₅ H ₈ O ₂	140-88-5	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	142-82-5	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	110-54-3	0.50	34	1.47
Methane	CH ₄	74-82-8	2.20	37	1.35
Methanol	CH ₄ O	67-56-1	3.00	92	0.54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	107-98-2	0.90	26	1.92
Methyl choride	CH₃CI	74-87-3	3.80	47	1.06
Methylene chloride	CH ₂ Cl ₂	75-09-2	6.50	20	2.50
Methyl tert-butyl ether (MTBE)	C ₅ H ₁₂ O	1634-04-4	0.80	59	0.85
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	on request	_
n-Octane	C ₈ H ₁₈	111-65-9	0.40	20	2.50
n-Pentane	C ₅ H1 ₂	109-66-0	0.55	36	1.39
Propane	C ₃ H ₈	74-98-6	0.85	50	1.00
n-Propanol	C ₃ H ₈ O	71-23-8	1.05	40	1.25
Propene	C ₃ H ₆	115-07-1	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	75-56-9	0.95	49	1.02
Toluene	C ₇ H ₈	108-88-3	0.50	19	2.63
o-Xylene	C ₈ H ₁₀	95-47-6	0.50	11	4.55

f = Specifications relate to the respective test gas concentration and the corresponding LEL.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

5.5 Dräger PID sensors

Many flammable gases and vapors are toxic to humans long before they reach the lower explosion limit (LEL). For this reason, personal protection in the workplace ideally includes the additional measurement of ppm levels of volatile organic substances using a PID sensor.

The air is drawn into the measuring chamber through the gas inlet. In the chamber, a UV lamp produces photons, which ionize certain molecules within the flow of gas. A relatively high amount of energy is required to ionize the air's permanent gases such as noble gases, nitrogen, oxygen, carbon dioxide, and water vapor. For this reason, these gases do not interfere with the measurement of the harmful substances. Most of the organic substances recognized as dangerous (such as hydrocarbons) are ionized and subjected to the electrical field between the electrodes in the measuring chamber. The strength of the resulting current is directly proportional to the concentration of ionized molecules inside the chamber. This makes it possible to determine the concentration of harmful substance in the air.

Porous Electrode (current measurement) We have a second of the control of the co

Ionization energy and UV lamps

0-16405-2009

lonization energy is measured in electron volts (eV) and defines the amount of energy required to bring a molecule into the ionized (charged) state. Ionization energy is something specific to each material, like the boiling point and vapor pressure. For a substance to be ionized, its ionization energy must be lower than the photon energy from the lamp used in the PID. Common is the lamp type 10.6 eV lamp. This enables a PID to detect whole groups of harmful substances, while it can also be used to measure single substances if calibrated accordingly.

Calibration and response factors

Isobutylene is used to calibrate a PID, unless the actual substance being measured can be used. The relative sensitivity to other substances is then expressed in terms of response factors. If a substance is detected with greater sensitivity than isobutylene, then its response factor is less than one. Substances that are detected with less sensitivity than isobutylene have a response factor greater than one.

FOR EXAMPLE:

Substance	Ionization energy	Response factor	
Benzene	9.25 eV	0.5	
Cyclohexane	9.98 eV	1.3	

DrägerSensor® PID HC

Order no. 68 13 475

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	UV lamp
Dräger X-am 8000	no	yes	1 year1)	2 years	10.6 eV
					(Krypton)

MARKET SEGMENTS

Chemical industry, painters, storage and use of fuels (e.g. gas stations)

TECHNICAL SPECIFICATIONS

Detection limit:*	0.3 ppm isobutylene		
Resolution:*	0-20 ppm	100 ppb	
(valid for isobutylene)	> 20-50 ppm	200 ppb	
	> 50-100 ppm	500 ppb	
	> 100-200 ppm	1 ppm	
	> 200-500 ppm	2 ppm	
	> 500-1.000 ppm	5 ppm	
	> 1,000-2,000 ppm	10 ppm	
Measurement range:	0 to 2,000 ppm isobutylene		
General technical specifications			
Ambient conditions			
Temperature:2)	(-20 to 60)°C (-4	to 140)°F	
Humidity:2)	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	2 minutes ready for measurement (warm-up 1)		
	2 minutes ready for	calibration (warm-up 2)	

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 2,000 PPM WHEN CALIBRATED WITH ISOBUTYLENE IN AIR:

Response time:	Diffusion mode ≤ 5 seconds (t ₂₀)			
	Diffusion mode ≤ 10 seconds (t ₉₀)			
	Pump mode \leq 5 seconds (t ₂₀) Pump mode \leq 10 seconds (t ₉₀)			
Precision				
at 100 ppm isobutylene:	≤ ± 2% of measured value; at zero point ≤ ±0.3 ppm isobutylene			
Linearity error:	≤ ± 5% of measured value; A calibration in the range of the expected			
	concentration will give a higher accuracy at the measuring point.			
Influence of temperature (-20 to	50 °C)			
Zero point:	0.02 ppm/K			
Sensitivity:	0.2 ppm/K			
Influence of pressure	compensated			
Influence of humidity, at 20 °C (68	°F) (0 to 90% RH, non-condensing)			
Zero point:	≤ ± 0.05 ppm isobutylene/% RH			
at 100 ppm isobutylene:	≤ ± 0.15 ppm isobutylene/% RH			
Test gas:	approx. 100 ppm i-C ₄ H ₈ (isobutylene)			

^{*} Depends on the response factor of the measured gas

¹⁾ At a run time of max. 2,500 hours

²⁾ Sudden temperature and humidity changes influence the measurement signal. When sudden temperature and humidity changes are expected, it is recommended to use a humidity pre-tube (81 03 531) for the measurement.

The PID can be used to detect numerous volatile organic compounds (VOCs). More than 80 of the VOCs most commonly used in industry are stored in its data memory. Other gases can be added to the memory on the customer's request.

GASES STORED IN THE MEMORY

Gas/Vapor	CAS no.	Code	Measurement range
Acetaldehyde	75-07-0	Aald	0 - 10000 ppm
Acetone	67-64-1	Acet	0 - 2000 ppm
Acetophenone	98-86-2	AcPh	0 - 2000 ppm
Acrolein	107-02-8	Acro	0 - 8000 ppm
Allylalcohol	107-18-6	AIOH	0 - 4500 ppm
Allyl chloride	107-05-1	AICI	0 - 8000 ppm
alpha-Pinen	2437-95-8	aPIN	0 - 800 ppm
Ammonia	7664-41-7	NH3	0 - 10000 ppm
Benzene	71-43-2	C6H6	0 - 1000 ppm
1-Bromopropane	106-94-5	BrPr	0 - 3000 ppm
1,3-Butadiene	106-99-0	BTD1	0 - 1500 ppm
1-Butanol	71-36-3	BuOH	0 - 9500 ppm
2-Butanol	78-92-2	2BOH	0 - 6500 ppm
1-Butene	106-98-9	Bute	0 - 2000 ppm
n-Butyl acetate	123-86-4	Bace	0 - 5500 ppm
Carbon disulfide	75-15-0	CS2	0 - 2000 ppm
Chlorobenzene	108-90-7	CIBz	0 - 1000 ppm
Cumene	98-82-8	Cume	0 - 1500 ppm
Cyclohexane	110-82-7	Chex	0 - 2500 ppm
Cyclohexanone	108-94-1	СуНо	0 - 2000 ppm
1,2-Dichlorobenzene (ortho-)	95-50-1	BeDi	0 - 1500 ppm
trans-1,2-Dichloroethylene	156-60-5	DiCl	0 - 900 ppm
Diesel fuel	68476-34-6	Desl	0 - 2000 ppm
Dimethyl ether	115-10-6	DME	0 - 5000 ppm
N,N-Dimethylformamide	68-12-2	DMF	0 - 2000 ppm
1,4-Dioxane	123-91-1	Diox	0 - 2500 ppm
Ethanol	64-17-5	<u>EtOH</u>	0 - 10000 ppm
Ethyl acetate	141-78-6	Etat	0 - 8000 ppm
Ethylbenzene	100-41-4	EtBz	0 - 1000 ppm
Ethylene	74-85-1	C2H4	0 - 10000 ppm
Ethylene oxide	75-21-8	EO	0 - 10000 ppm
Ethyl ether	60-29-7	DETH	0 - 2000 ppm
Ethyl mercaptan	75-08-1	EtM	0 - 5000 ppm
Ethyl tert-butyl ether	637-92-3	ETBE	0 - 2000 ppm
4-Ethyltoluene	622-96-8	EtTo	0 - 1000 ppm
Furfural	98-01-1	Furf	0 - 3000 ppm
Gasoline	8006-61-9	Gaso	0 - 2000 ppm
n-Heptane	142-82-5	Hept	0 - 6500 ppm

GASES STORED IN THE MEMORY

Gas/Vapor	CAS no.	Code	Measurement range
1,1,1,3,3,3-Hexamethyldisilazane	999-97-3	HMDS	0 - 500 ppm
n-Hexane	110-54-3	Hexa	0 - 8000 ppm
1-Hexene	592-41-6	Hex1	0 - 2000 ppm
Hydrogen sulfide	7783-06-4	H2S	0 - 8000 ppm
Isobutanol	78-83-1	iBto	0 - 10000 ppm
Isobutyl acetate	110-19-0	iBAc	0 - 6500 ppm
Isobutylene	115-11-7	iBut	0 - 2000 ppm
Iso-octane	540-84-1	iOct	0 - 2000 ppm
Isoprene	78-79-5	iPre	0 - 1500 ppm
Isopropanol (IPA)	67-63-0	PrOH	0 - 10000 ppm
Isopropyl acetate	108-21-4	iPAc	0 - 6000 ppm
Isopropyl ether	108-20-3	iPEt	0 - 2000 ppm
Jet fuel	8008-20-6	JetF	0 - 2000 ppm
2-Methoxyethanol	109-86-4	EGME	0 - 6500 ppm
Methyl acetate	79-20-9	MeAc	0 - 10000 ppm
Methyl bromide	74-83-9	MeBr	0 - 4000 ppm
2-Methylbutane (Isopentane)	78-78-4	iPen	0 - 10000 ppm
Methylcyclohexane	108-87-2	Mche	0 - 2000 ppm
Methyl ethyl ketone	78-93-3	MEK	0 - 2000 ppm
Methyl isobutyl carbinol	108-11-2	MIBC	0 - 4000 ppm
Methyl isobutyl ketone	108-10-1	MiBK	0 - 2000 ppm
Methyl mercaptane	74-93-1	MeM	0 - 1500 ppm
Methyl tert-butyl ether	1634-04-4	MTBE	0 - 2000 ppm
n-Nonane	111-84-2	Nona	0 - 3000 ppm
n-Octane	111-65-9	Octa	0 - 4000 ppm
n-Pentane	109-66-0	Pent	0 - 10000 ppm
1-Pentanol	71-41-0	PeOH	0 - 9500 ppm
Phosphine	7803-51-2	PH3	0 - 8000 ppm
n-Propanol	71-23-8	nPOH	0 - 10000 ppm
Propyl acetate	109-60-4	PrAc	0 - 9000 ppm
Propylene	115-07-1	C3H6	0 - 2500 ppm
Styrene	100-42-5	Styr	0 - 800 ppm
Tetrachloroethylene	127-18-4	PCE	0 - 1500 ppm
Tetrahydrofuran	109-99-9	THF	0 - 4000 ppm
Thiophene	110-02-1	ThPh	0 - 700 ppm
Toluene	108-88-3	Tolu	0 - 1000 ppm
Trichloroethylene	79-01-6	TCE	0 - 1000 ppm
1,2,4-Trimethylbenzene (Pseudocumene)	95-63-6	PsDo	0 - 1000 ppm
1,3,5-Trimethylbenzene	108-67-8	Mesi	0 - 1000 ppm
Vinyl acetate	108-05-4	Vac	0 - 2500 ppm
Vinyl chloride	75-01-4	VC	0 - 4000 ppm
Vinylidene Chloride	75-35-4	DCE	0 - 2000 ppm
meta-Xylene	108-38-3	mXyl	0 - 800 ppm
ortho-Xylene	95-47-6	Xyol	0 - 1000 ppm
para-Xylene	106-42-3	pXyl	0 - 1000 ppm

The response factors of the library gases are predefined and cannot be changed. For gases not included in the library, use the designated user gases VOC, VOC_1 to VOC_9 . These can be configured accordingly on a customer-specific basis.

For additional information on the gases stored in the library see data sheet 9300316 at www.draeger. com at the Dräger X-am 8000 or the PID sensors (instructions for use).

DrägerSensor® PID LC ppb

Order no. 68 13 500

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	UV lamp
Dräger X-am 8000	no	yes	1 year1)	2 years	10.6 eV
					(Krypton)

MARKET SEGMENTS

Chemical industry, painters, storage and use of fuels (e.g. gas stations), benzene specific measure-

TECHNICAL SPECIFICATIONS

Detection limit:*	0.03 ppm / benzene		
Resolution:*	0-2 ppm	10 ppb	
(valid for isobutylene and	> 2-5 ppm	20 ppb	
benzene)	> 5-10 ppm	50 ppb	
Measurement range:	0 to 10 ppm isob	outylene/0 to 5 ppm benzene	
General technical specifications			
Ambient conditions			
Temperature:2)	(-20 to 60)°C (-	-4 to 140)°F	
Humidity:2)	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	1 minute ready for measurement (warm-up 1)		
	5 minutes ready for calibration (warm-up 2)		

TYPICAL MEASURING PROPERTIESFOR THE MEASUREMENT RANGE 0 TO 10 PPM WHEN CALIBRATED WITH ISOBUTYLENE IN AIR:

Response time:	Diffusion mode ≤ 5 seconds (t ₂₀)			
	Diffusion mode ≤ 15 seconds (t ₉₀)			
	Pump mode \leq 5 seconds (t ₂₀)			
	Pump mode ≤ 15 seconds (t ₉₀)			
Precision				
at 5 ppm isobutylene:	≤ ± 2% of measured value; at zero point ≤ ± 0.05 ppm isobutylene			
Linearity error:	≤ ± 5% of measured value; A calibration in the range of the expected			
	concentration will give a higher accuracy at the measuring point.			
Influence of pressure	compensated			
Influence of humidity, at 20 °C (68	°F) (0 to 90% RH, non-condensing)			
Zero point:	≤ ± 0.005 ppm isobutylene/% RH			
at 5 ppm isobutylene:	≤ ± 0.02 ppm isobutylene/% RH			
Test gas:	approx. 5 ppm i-C ₄ H ₈ (isobutylene)			

^{*} Depends on the response factor of the measured gas

¹⁾ At a run time of max. 2,500 hours

²⁾ Sudden temperature and humidity changes influence the measurement signal. When sudden temperature and humidity changes are expected, it is recommended to use a humidity pre-tube (81 03 531) for the measurement.

Apart from the detection of a variety of volatile organic compounds (VOC) this sensor is suitable for a benzene specific measurement in the ppb range. Using the prefilter benzene (81 03 511) tube concurrent hydrocarbons will be filtered.

GASES STORED IN THE MEMORY

Gas/Vapor	CAS no.	Code	Measurement range
Acetaldehyde	75-07-0	Aald	1)
Acetone	67-64-1	Acet	0 - 18 ppm
Acetophenone	98-86-2	AcPh	0 - 15 ppm
Acrolein	107-02-8	Acro	1)
Allylalcohol	107-18-6	AIOH	0 - 35 ppm
Allyl chloride	107-05-1	AICI	0 - 80 ppm
alpha-Pinen	80-56-8	aPIN	0 - 8 ppm
Ammonia	7664-41-7	NH3	1)
Benzene	71-43-2	C6H6	0 - 8 ppm
1-Bromopropane	106-94-5	BrPr	0 - 30 ppm
1,3-Butadiene	106-99-0	BTD1	0 - 10 ppm
1-Butanol	71-36-3	BuOH	0 - 80 ppm
2-Butanol	78-92-2	₂ BOH	0 - 40 ppm
1-Butene	106-98-9	Bute	0 - 20 ppm
n-Butyl acetate	123-86-4	Bace	0 - 40 ppm
Carbon disulfide	75-15-0	CS2	0 - 15 ppm
Chlorobenzene	108-90-7	CIBz	0 - 12 ppm
Cumene	98-82-8	Cume	0 - 12 ppm
Cyclohexane	110-82-7	Chex	0 - 24 ppm
Cyclohexanone	108-94-1	СуНо	0 - 15 ppm
1,2-Dichlorobenzene (ortho-)	95-50-1	BeDi	0 - 10 ppm
trans-1,2-Dichloroethylene	156-60-5	DiCI	0 - 8 ppm
Diesel fuel	68476-34-6	Desl	0 - 15 ppm
Dimethyl ether	115-10-6	DME	0 - 45 ppm
N,N-Dimethylformamide	68-12-2	DMF	1)
1,4-Dioxane	123-91-1	Diox	0 - 25 ppm
Ethanol	64-17-5	EtOH	1)
Ethyl acetate	141-78-6	Etat	0 - 75 ppm
Ethylbenzene	100-41-4	EtBz	0 - 14 ppm
Ethylene	74-85-1	C2H4	1)
Ethylene oxide	75-21-8	EO	1)
Ethyl ether	60-29-7	DETH	0 - 20 ppm
Ethyl mercaptan	75-08-1	EtM	0 - 35 ppm
Ethyl tert-butyl ether	637-92-3	ETBE	0 - 16 ppm
4-Ethyltoluene	622-96-8	EtTo	0 - 8 ppm
Furfural	98-01-1	Furf	0 - 20 ppm
Gasoline	8006-61-9	Gaso	0 - 15 ppm
n-Heptane	142-82-5	Hept	0 - 45 ppm

GASES STORED IN THE MEMORY

1,1,1,3,3,3-Hexamethyldisilazane 999-97-3 HMDS 0 - 6 ppm n-Hexane 110-54-3 Hexa 0 - 70 ppm 1-Hexene 592-41-6 HEX1 0 - 20 ppm Hydrogen sulfide 7783-06-4 H2S 0 - 60 ppm Isobutanol 78-83-1 iBto 0 - 65 ppm Isobutyla acetate 110-19-0 iBAc 0 - 45 ppm Isobutylene 115-11-7 iBut 0 - 15 ppm Iso-octane 540-84-1 iOct 0 - 20 ppm Isopropanol (IPA) 67-63-0 PrOH 1) Isopropyl acetate 108-21-4 iPAc 0 - 50 ppm Isopropyl ether 108-20-3 iPEt 0 - 20 ppm Isopropyl ether 108-20-3 iPEt 0 - 20 ppm Jet fuel 8008-20-6 JetF 0 - 15 ppm 2-Methoxyethanol 109-86-4 EGME 0 - 50 ppm Methyl acetate 79-20-9 MeAc 1) Methyl bromide 74-83-9 MeBr 0 - 32 ppm 2-M	
Hexene	
Hydrogen sulfide 7783-06-4 H2S 0 - 60 ppm Isobutanol 78-83-1 iBto 0 - 65 ppm Isobutyl acetate 110-19-0 iBAc 0 - 45 ppm Isobutyl acetate 110-19-0 iBAc 0 - 45 ppm Isobutylene 115-11-7 iBut 0 - 15 ppm Iso-octane 540-84-1 iOct 0 - 20 ppm Iso-octane 540-84-1 iOct 0 - 20 ppm Isopropanol (IPA) 67-63-0 PrOH 1) Isopropyl acetate 108-21-4 iPAc 0 - 50 ppm Isopropyl ether 108-20-3 iPEt 0 - 20 ppm Isopropyl ether 108-20-3 iPEt 0 - 20 ppm Isopropyl ether 109-86-4 EGME 0 - 50 ppm Isopropyl acetate 79-20-9 MeAc 1) Methyl acetate 79-20-9 MeAc 1) Methyl bromide 74-83-9 MeBr 0 - 32 ppm Isopropyl ethyl ketone 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm Nonane 111-84-2 Nona 0 - 32 ppm Nonane 111-65-9 Octa 0 - 32 ppm Nonane 0 - 32 ppm Nonane 111-65-9 Octa 0 - 32 ppm Nonane 111-65-9 Octa 0 - 32 ppm Nonane 0 - 32 ppm Nonane 111-65-9 Octa 0 - 32 ppm Nonane 0 - 32 ppm Nonane 0 - 32 pp	
Sobutanol 78-83-1 iBto 0 - 65 ppm Isobutyl acetate 110-19-0 iBAc 0 - 45 ppm Isobutylene 115-11-7 iBut 0 - 15 ppm Isobutylene 115-11-7 iBut 0 - 15 ppm Iso-octane 540-84-1 iOct 0 - 20 ppm Isoprene 78-79-5 iPre 0 - 10 ppm Isopropanol (IPA) 67-63-0 PrOH 1) Isopropyl acetate 108-21-4 iPAc 0 - 50 ppm Isopropyl ether 108-20-3 iPEt 0 - 20 ppm Isopropyl ether 108-20-3 iPEt 0 - 15 ppm Isopropyl ether 109-86-4 EGME 0 - 50 ppm Isopropyl ether 109-86-4 IPen 1) Isopropyl ether 108-87-9 IPen 1) Isopropyl ether 108-87-2 IPen IPe	
Sobutyl acetate	
Isobutylene	
Iso-octane	
Soprene 78-79-5 iPre 0 - 10 ppm	
Sopropanol (IPA) 67-63-0 PrOH 1)	
Sopropyl acetate 108-21-4 iPAc 0 - 50 ppm	
Sopropyl ether 108-20-3 iPEt 0 - 20 ppm	
Jet fuel 8008-20-6 JetF 0 - 15 ppm 2-Methoxyethanol 109-86-4 EGME 0 - 50 ppm Methyl acetate 79-20-9 MeAc 1) Methyl bromide 74-83-9 MeBr 0 - 32 ppm 2-Methylbutane (Isopentane) 78-78-4 iPen 1) Methylcyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
2-Methoxyethanol 109-86-4 EGME 0 - 50 ppm Methyl acetate 79-20-9 MeAc 1) Methyl bromide 74-83-9 MeBr 0 - 32 ppm 2-Methylbutane (Isopentane) 78-78-4 iPen 1) Methylcyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl acetate 79-20-9 MeAc 1) Methyl bromide 74-83-9 MeBr 0 - 32 ppm 2-Methylbutane (Isopentane) 78-78-4 iPen 1) Methylcyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl bromide 74-83-9 MeBr 0 - 32 ppm 2-Methylbutane (Isopentane) 78-78-4 iPen 1) Methylcyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
2-Methylbutane (Isopentane) 78-78-4 iPen 1) Methylcyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyloyclohexane 108-87-2 Mche 0 - 20 ppm Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl ethyl ketone 78-93-3 MEK 0 - 16 ppm Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl isobutyl carbinol 108-11-2 MIBC 0 - 25 ppm Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl isobutyl ketone 108-10-1 MiBK 0 - 18 ppm Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl mercaptane 74-93-1 MeM 0 - 10 ppm Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
Methyl tert-butyl ether 1634-04-4 MTBE 0 - 16 ppm n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
n-Nonane 111-84-2 Nona 0 - 32 ppm n-Octane 111-65-9 Octa 0 - 32 ppm	
n-Octane 111-65-9 Octa 0 - 32 ppm	
<u>n-Pentane</u> <u>109-66-0</u> <u>Pent</u> <u>1)</u>	
<u>1-Pentanol</u> 71-41-0 PeOH <u>0 - 65 ppm</u>	
Phosphine 7803-51-2 PH3 0 - 50 ppm	
<u>n-Propanol</u> 71-23-8 <u>nPOH</u> 1)	
Propyl acetate 109-60-4 PrAc 0 - 65 ppm	
Propylene 115-07-1 C3H6 0 - 19 ppm	
Styrene 100-42-5 Styr 0 - 12 ppm	
Tetrachloroethylene 127-18-4 PCE 0 - 15 ppm	
Tetrahydrofuran 109-99-9 THF 0 - 25 ppm	
Thiophene 110-02-1 ThPh 0 - 8 ppm	
<u>Toluene</u> 108-88-3 <u>Tolu</u> 0 - 15 ppm	
Trichloroethylene 79-01-6 TCE 0 - 14 ppm	
1,2,4-Trimethylbenzene (Pseudocumene) 95-63-6 PsDo1)	
<u>1,3,5-Trimethylbenzene</u> <u>108-67-8</u> <u>Mesi</u> <u>0 - 8 ppm</u>	
Vinyl acetate 108-05-4 Vac 0 - 30 ppm	
Vinyl chloride 75-01-4 VC 0 - 32 ppm	
Vinylidene Chloride 75-35-4 DCE 0 - 12 ppm	
meta-Xylene 108-38-3 mXyl 0 - 10 ppm	
<u>ortho-Xylene</u> <u>95-47-6</u> <u>Xyol</u> <u>0 - 12 ppm</u>	
<u>para-Xylene</u> <u>106-42-3</u> <u>pXyl</u> <u>0 - 8 ppm</u>	

The standard gas is: Isobutylene

⁻⁻⁻¹⁾ The measuring capability of the sensor type is not sufficient for this substance.

The response factors of the library gases are predefined and cannot be changed. For gases not included in the library, use the designated user gases VOC, VOC_1 to VOC_9 . These can be configured accordingly on a customer-specific basis.

For additional information on the gases stored in the library see data sheet 9300316 at www.draeger. com at the Dräger X-am 8000 or the PID sensors (instructions for use).

Dräger X-pid 9x00 Analysis PID Dräger X-pid 9x00 Seeker PID

Order no. 68 50 012

Order no. 68 50 013

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	UV lamp
Dräger X-pid	no	yes	1 year	> 5 years (10,000 h)	10.6 eV
9000/9500					

MARKET SEGMENTS

Chemical industry, painters, storage and use of fuels (e.g. gas stations), selective measurements of e.g. benzene or 1,3-Butadiene

TECHNICAL SPECIFICATIONS (IN SYSTEM)

Resolution:*	0 – 9.99 ppm	0.01 ppm	
	> 10 - 99.9 ppm	0.1 ppm	
	> 100 ppm	1 ppm	
General technical data			
Ambient conditions			
Temperature:	(-10 to 35)°C (14 to	95)°F	
Humidity:	10 to 90 % RH (to 9	5 % RH intermittent)	
Pressure:	700 to 1300 hPa		
Warm-up time:	10 minutes		

FOR THE MEASUREMENT MODE SEEKER:

Response time:	approx. 45 seconds (isobutylene, w/o hose)			
Detection limit:	0.01 ppm isobutylene (isobutylene response)			
Measurement range:	0 to 60 ppm isobutylene (isobutylene response)			
Precision ¹	< 2 % at 10.0 ppm isobutylene			
(k = 1, ~68 %)	< 2 % at 5.00 ppm Benzene			
Linearity error:	not specified			
Influence of pressure:	not specified			
Influence of humidity, at 40 °C (104 °F) (0 to 95 % RH, non-condensing)			
Zero point:	not specified			
Sensitivity:	not specified			
Test gas:	Mixture of 10 ppm i-C ₄ H ₈ (isobutylene) and 10 ppm C ₇ H ₈ (Toluene)			

^{*} depends on the response factor of the sample gas

FOR THE MEASUREMENT MODE ANALYSIS:

Response time:	none (provided that substance concentration is present			
	at the device at the start of the analysis)			
Detection limit:	Substance-dependent, see table with target substances			
Measurement range:	Substance-dependent, see table with target substances			
Precision ¹	< 2 % at 10.0 ppm isobutylene			
(k = 1, ~68 %)	< 2 % at 5.00 ppm Benzene			
Analyse time	Substance-dependent, due to the most non-volatile compound			
	20 s isobutylene analysis program			
	30 s benzene analysis program			
	30 s isobutylene & benzene analysis program			
Influence of pressure:	No effect			
Influence of humidity:	No effect			
Test gas:	Mixture of 10 ppm i-C ₄ H ₈ (isobutylene) and 10 ppm C ₇ H ₈ (Toluene)			

SPECIAL CHARACTERISTICS

The selective PID gas detector is ideally suited for users with large measurement volumes for toxic hazardous substances. Benzene, butadiene and other VOCs have a carcinogenic effect even in the lowest concentrations. A selective measurement is necessary, because other gases and vapors are often present. The gas measuring device enables short measuring times and results in laboratory quality.

FOR THE MEASUREMENT MODE ANALYSIS QUALIFIED AND QUANTIFIED TARGET COMPOUNDS

Response time:

No $t_{\mbox{\tiny 90}}$, provided that substance concentration is present at the device at the start of the analysis. Analysis time depends on the substance, due to the most non-volatile compound.

30 s benzene analysis program 10 s butadiene analyis program

30 s benzene & butadiene analysis program

Target compounds	CAS no.	Retention time, s	LOD¹), ppm	LOQ ²⁾ , ppm	UR³), ppm
Acetone	67-64-1	8.10	0.17	0.50	50
Acroleine	107-02-8	7.80	0.33	1.00	100
Benzene	71-43-2	19.30	0.02	0.05	25
Butadiene, 1,3-	106-99-0	6.40	0.07	0.20	25
Butyl acetate	123-86-4	64.30	0.67	2.00	220
Butyraldehyde	123-72-8	12.23	4.00	12.00	210
Carbon disulfide	75-15-0	9.80	0.33	1.00	110
Cyclohexane	110-82-7	20.30	0.67	2.00	200
Dichloroethene, 1,1-	75-35-4	8.90	0,07	0.20	50
Dichloroethene, cis-1,2-	156-59-2	13.40	0,07	0.20	50
Dichloroethene,	156-60-5	10.90	0,07	0.20	50
trans-1,2-					
Diethylcarbonat	105-58-8	48.4	4.33	13.0	1200
Dimethylcarbonate	616-38-6	14.6	1.67	5.00	500
Ethanol	64-17-5	7.52	10.00	30.00	935
Ethylbenzene	100-41-4	88.70	1.00	3.00	300
Ethylene oxide	75-21-8	6.80	0.33	1.00	100
Ethylmethylcarbonat	623-53-0	25.5	4.17	12.5	2000
Heptane, n-	142-82-5	27.10	5.00	15.00	500
Hexane, n-	110-54-3	13.70	0.33	1.00	100
Isobutylene	115-11-7	6.30	0.07	0.20	100
Isopropyl alcohol	67-63-0	9.10	1.00	3.00	200
Methyl acrylate	96-33-3	14.40	0.67	2.00	200
Methyl bromide	74-83-9	6.80	0.17	0.50	100
Methyl Methacrylate	80-62-6	27.66	2.50	7.50	275
Phosphine	7803-51-2	5.30	0.67	2.00	100
Propanol, 1-	71-23-8	11.56	5.00	15.00	550
Propylene oxide	75-56-9	8.20	0.17	0.50	25
Styrene	100-42-5	111.30	1.00	3.00	300
Tetrachloroethylene	127-18-4	58.90	0.67	2.00	150
Tetrahydrofuran	109-99-9	16.50	1.00	3.00	200
Toluene	108-88-3	41.60	0.33	1.00	100
Trichloroethylene	79-01-6	24.90	0.33	1.00	100
Vinyl acetate	108-05-4	11.9	0.33	1.00	55.0
Vinyl chloride	75-01-4	6.30	0.33	1.00	100
Xylene, m-	108-38-3	95.70	1.00	3.00	300
Xylene, o-	95-47-6	114.50	1.00	3.00	300
Xylene, p-	106-42-3	96.60	1.00	3.00	300

FOR THE MEASUREMENT MODE QUALIFIED TARGET COUMPOUNDS (BUT NOT QUANTIFIED)

Other target substances are qualified but not quantified for the Dräger X-pid® 9500. The measuring range has not always been determined experimentally; instead, no specification is possible in these cases. Qualified target substances can be added to analysis programs and assigned in analyses by their retention time. The concentration calculation is done via simplified assumptions without claiming high accuracy.

Target compounds	CAS no.	Retention time, s	LOD ¹⁾ , ppm	LOQ ²⁾ , ppm	UR ³⁾ , ppm
Butanone, 2-	78-93-3	12.9	1	3	300
Butyl acrylate	141-32-2	125.5	-	-	-
Chlorobenzene	108-90-7	75.6	1	3	200
Epichlorohydrin	106-89-8	27.3	0.67	2	200
Ethyl acetate	141-78-6	14.6	1	3	300
Ethyl acrylate	140-88-5	24.9	1	3	200

¹⁾ Limit of detection

²⁾ Limit of quantification

³⁾ Upper range

DrägerSensor® Smart PID

Order no. 83 19 100

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	UV lamp
Dräger X-am 7000	yes	yes	1 years	> 1 year	10.6 eV

MARKET SEGMENTS

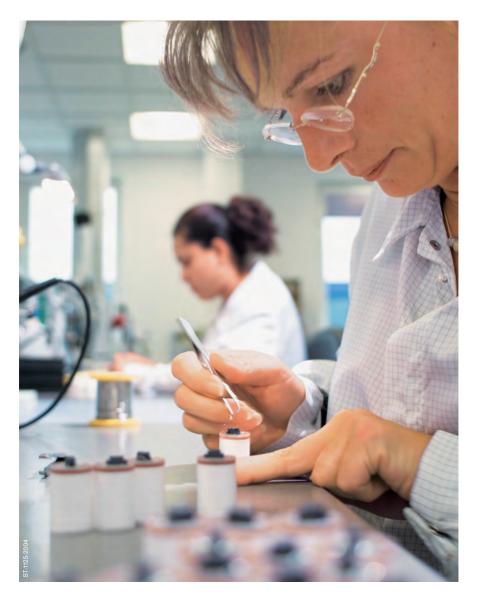
Chemical industry, painters, storage and use of fuels (e.g. gas stations)

TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm isobutylene	
Resolution:	1 ppm up to 100 ppm	
	2 ppm from 100 to 250 ppm	
	5 ppm from 250 ppm upwards	
Measurement range:	0 to 2,000 ppm isobutylene	
General technical specifications		
Ambient conditions		
Temperature:	(-20 to 60)°C (-4 to 140)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	4 minutes	

FOR THE MEASUREMENT RANGE 1 TO 2,000 PPM WHEN CALIBRATED WITH **ISOBUTYLENE IN AIR:**

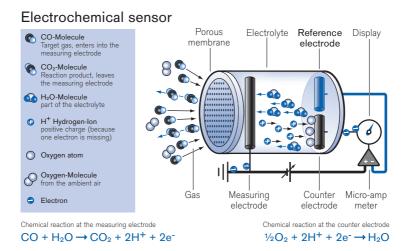
Response time:	Diffusion mode ≤ 15 seconds (t ₂₀)			
	Diffusion mode ≤ 50 seconds (t ₉₀)			
	Pump mode ≤ 10 seconds (t ₂₀)			
	Pump mode ≤ 25 seconds (t ₉₀)			
Precision				
at 100 ppm isobutylene:	≤ ± 2 ppm isobutylene			
Linearity error, typical:	≤ ± 5% of measured value			
Influence of pressure	≤ ± 0.1% of measured value/hPa			
Influence of humidity, at 40°C (104	1°F) (0 to 95 % RH, non-condensing)			
Zero point:	≤ ± 0.06 ppm isobutylene/% RH			
at 100 ppm isobutylene:	≤ ± 0.15 ppm isobutylene/% RH			
Test gas:	approx. 100 ppm i-C ₄ H ₈ (isobutylene)			


The PID can be used to detect numerous volatile organic compounds (VOCs). More than 20 of the VOCs most commonly used in industry are stored in its data memory. Other gases can be added to the memory on the customer's request.

GASES STORED IN THE MEMORY

Gas/vapor	CAS no.	Data set name	Measurement
			range
Acetone	67-64-1	ACTO	0-2,000 ppm
alpha-pinene	2437-95-8	aPIN	0-1,000 ppm
Benzene	71-43-2	BENZ	0-1,000 ppm
Chlorobenzene	108-90-7	CLBZ	0-1,500 ppm
Cyclohexane	110-82-7	CYHE	0-3,000 ppm
Ethyl acetate	141-78-6	ETAC	0-7,000 ppm
Ethylbenzene	100-41-4	ETBZ	0-1,500 ppm
Isobutylene	115-11-7	IBUT	0-2,000 ppm
Methyl bromide	74-83-9	MEBR	0-4,000 ppm
Methyl ethyl ketone	78-93-3	MEK	0-1,000 ppm
Methyl tert-butyl ether (MTBE)	1634-04-4	MTBE	0-2,000 ppm
n-nonane	111-84-2	NONA	0-3,000 ppm
n-octane	111-65-9	OCTA	0-5,000 ppm
Styrene	100-42-5	STYR	0-1,500 ppm
Toluene	108-88-3	TOLU	0-1,500 ppm
Trichloroethylene	79-01-6	TCE	0-1,500 ppm
Vinyl chloride	75-01-4	VC	0-3,000 ppm
o-Xylene	95-47-6	XYLE	0-1,500 ppm
Diesel		DESL	0-2,000 ppm
Gasoline		GASO	0-2,000 ppm
Jet fuel		JP ₈	0-2,000 ppm

The standard gas is: Isobutylene


5.6 Electrochemical sensors

Many toxic gases are highly reactive and can change their chemical composition under certain conditions. An electrochemical sensor is a micro-reactor, which produces a very small but measurable current when reactive gases are present. As in a normal household battery, this involves an electrochemical process, since the chemical transformation produces electrons.

The basic principle behind an electrochemical sensor involves at least two electrodes (a measuring electrode and a counter-electrode), which have contact with each other in two ways: first, through an electrically conductive medium (electrolyte, meaning a fluid that conducts ions) and, second, through an external electrical circuit (electron conductor). The electrodes are made of a special material that also has catalytic characteristics so that certain chemical reactions take place at what is known as the three-phase zone where gas, solid catalyzer, and liquid electrolyte meet. A dual-electrode sensor (measuring and counter-electrode) does, however, have many drawbacks. For instance, if high concentrations of gas occur, this leads to higher currents in the sensor and, therefore, to a drop in voltage. The drop in voltage, in turn, changes the preset sensor voltage. This can lead to unusable readings or, in the worst case, it can cause the chemical reaction inside the sensor to come to a halt during the measurement process.

For this reason, the Dräger XS and XXS sensors contain a third electrode known as the reference electrode, which does not have a current passing through it, and whose potential therefore remains constant. It continuously measures the sensor voltage at the measuring electrode, which can be corrected using the sensor's control enhancement. This produces a considerably improved measuring quality (e.g. in terms of linearity and selectivity) and a longer life time.

0-16399-2009

The Dräger XS sensors are known as "smart" sensors and contain their own EEPROM. This memory module contains all of the sensor's relevant data, which, when plugged into Dräger X-am 7000 is retrieved. The device then automatically adjusts itself to these figures (e.g. calibration figures, alarm level). This "plug & play" function enables sensors to be swapped between devices without performing operations such as a re-calibration. XXS sensors are used in the following devices: Dräger Pac family and Dräger X-am PAM and Dräger X-am CSE. In this case, the sensor-relevant data is stored in the device. When a sensor is changed, this information is transferred using a software application.

General Instructions for DrägerSensors® XS, XS R, XS 2 and XXS

1 Intended Use

For use in Dräger gas monitors in accordance with the Instructions for Use of the individual sensor.

2 Readiness for Operation of a new Sensor

XS, XS R and XS 2:

The sensor has an internal data memory (EEPROM) which is evaluated by an appropriate Dräger gas monitor.

New sensors are supplied with calibration data and certain default settings already stored in the data memory. The default settings, such as measuring range, alarm thresholds and calibration intervals can be adjusted by the user in some of the Dräger gas monitors. If a sensor is replaced by another of the same type (with the same order number), the new settings entered by the user are retained.

XXS: Calibration should be carried out before using the sensor for the first time and when replacing the sensor.

3 Sensor Calibration/Adjustment

Calibration/adjustment interval: Recommended interval see Instructions for Use of the sensor in use. For safety-relevant applications: perform a test of zero point and sensitivity with the sensor fitted in the Dräger gas monitor in accordance with local regulations.

Calibration/adjustment of zero point: Apply zero gas (nitrogen or synthetic air) with a flow of 0.5 litres per minute to the sensor. Waiting time for measured value to stabilize = up to 3 minutes.

Checking zero point for O_2 sensors (optional test): For test gas use pure nitrogen. In order to prevent return diffusion: fit the second outlet socket of the calibration adapter with a piece of tubing of at least 10 cm length. 3 minutes following commencement of exposure, the measured value display must be lower than 0.6% O_2 by vol. for N_2 .

Calibration/adjustment of Precision: Only use hoses made of polytetrafluoroethylene (PTFE) and fluoroelastomer (FKM). Keep tubing as short as possible, calibration gas may partly be adsorbed in the tubing. Regardless of the chosen measuring range use commercial calibration gas (see Instructions for Use of the respective sensor) with a typical concentration between 40% of the set full scale value and up to 80% of the highest adjustable full scale value. Test gas specifications may differ per sensor and must be taken into account. Dräger recommends using Dräger test gases for the adjustment and the function test. Apply calibration gas with a flow of 0.5 litres per minute to the sensor. Waiting time for measured value to stabilize = up to 5 minutes.

4 Measurements with hose probe (pump operation)

Follow the information contained in the Dräger gas monitor instructions for use. Some gases may be adsorbed on surfaces. Only use approved hoses. For more information, please contact your local Dräger offices or e-mail: mmt.applic@draeqer.com.

5 Replacing Selective Filter

To increase the selectivity of the sensors, some sensors are provided with a replaceable selective filter as standard (see Instructions for Use of the sensor in use). The following points should be observed when using the filter:

- 1. Remove filter with a peaked object.
- 2. Insert new filter.

Due to changed sensitivity, the instrument must be calibrated whenever the selective filter is replaced.

The measurement response time may increase after the filter is installed.

0

All other properties of the sensor remain unaffected by the use of the filter. For service life of the filter see Instructions for Use of the respective sensor. How often the selective filter needs to be replaced depends on the amount and type of hazardous substances it is exposed to.

For more information on handling, transport and disposal, please refer to the relevant Product Safety Information Sheets (PSIS) at www.draeger.com/sds.

Usage of electrochemical sensors in inert atmospheres

Generally, it is no problem to use an electrochemical sensor in inert atmospheres (atmosphere with < 8 % by volume oxygen). A maximum usage time of 10 hours should not be exceeded. Additionally, the sensor should be stored when not used (e.g. overnight) in a normal ambient conditions (20.9 % by volume oxygen).

APPLICABLE SENSORS

APPLICABLE 3E	INSORS		
DrägerSensors XX	S:	DrägerSensors XS	EC:
XXS Amine	68 12 545	XS EC Amine	68 09 545
XXS CI ₂	68 10 890	XS EC CI ₂	68 09 165
XXS CO	68 10 882	XS EC CI, XS EC CIO,	68 11 360
XXS CO LC	68 10 890 68 10 882 68 13 210	XS EC CO	68 09 105
XXS E CO	68 12 212	XS R CO	
XXS CO H ₂ -CP	68 11 950	XS-, CO	
	68 12 010		68 09 120
XXS CO/H ₂ S	68 11 410	XS EC CO ₂	68 09 175
XXS CO ₂	68 10 889	XS EC COCI,	68 08 582
XXS COCI,	68 10 889 68 12 005 68 12 025	XS EC H, HC	68 11 365
XXS H, HC	68 12 025	XS EC H ₂ O ₂	68 09 170
XXS H ₂ S	68 10 883	XS EC H ₂ S 100	68 09 110
XXS E H ₂ S	68 12 213	XS R H ₂ S	68 10 260
	68 12 015		68 10 370
XXS H ₂ S LC	68 11 525	XS EC H ₂ S HC	68 09 180
XXS HCN	68 10 887	XS FC HCN	68 09 150
XXS HCN PC	68 13 165 68 10 888 68 11 545	XS EC HF/HCI XS EC Hydrazine	68 09 140
XXS NH ₃	68 10 888	XS EC Hydrazine	68 09 190
XXS NO	68 11 545	XS EC Hydride	68 09 135
XXS NO,	68 10 884	XS EC NH ₃	
XXS NO, LC	68 12 600	XS EC NO	68 09 125
	68 10 881		
XXS E O.	68 12 211	XS EC O.	68 09 130
XXS O ₂ 100	68 12 385 68 12 535 68 11 530	XS R O, XS-2 O, XS EC O, 100	68 10 262
XXS Odorant	68 12 535	XS-2 O ₂	68 10 375
XXS OV	68 11 530	XS EC O, 100	68 09 550
XXS OV-A	68 11 535	XS EC Odorant	68 09 200
	68 11 540	XS EC OV	68 09 115
	68 10 886		
XXS PH HC	68 12 020		
XXS SO ₂	68 10 885	XS EC SO,	
XXS O,/CO LC	68 13 275*		
XXS O ₂ /H ₂ S LC	68 10 885 68 13 275* 68 14 137*	_	

^{*}for these sensors only N_a possible

XXS H,S-LC/CO LC 68 13 280*

CONTENTS XS SENSORS

XS Sensors	Chemical name (synonym)	
XS EC Amine	amine like methylamíne, ethylamine,	184
	dimethylamine etc.	
XS EC CI ₂	chlorine	186
XS EC CIO ₂	chlorine dioxide	188
XS EC CO	carbon monoxide	190
XS 2 CO	carbon monoxide	190
XS R CO	carbon monoxide	190
XS EC CO HC	carbon monoxide	194
XS EC CO ₂	carbon dioxide	196
XS EC COCI ₂	phosgene	198
XS EC H ₂	hydrogen	200
XS EC H ₂ HC	hydrogen	202
XS EC HCN	hydrogen cyanide	204
XS EC HF/HCI	hydrogen chloride/hydrogen fluoride	206
XS EC H ₂ S	hydrogen sulfide	208
XS 2 H ₂ S	hydrogen sulfide	208
XS R H ₂ S	hydrogen sulfide	208
XS EC H ₂ S HC	hydrogen sulfide	212
XS EC H ₂ O ₂	hydrogen peroxide	214
XS EC Hydrazine	hydrazine	216
XS EC Hydride	hydride like hydrogen phosphide, phosphine,	218
	arsine etc.	
XS EC NH ₃	ammonia	220
XS EC NO	nitrogen monoxide	222
XS EC NO ₂	nitrogen dioxide	224
XS EC Odorant	sulfur compounds like tetrahydrothiophene,	226
	methylmercapten, ethylmercaptan etc.	
XS EC OV	organic gases and vapors like ethylene oxide,	228
	ethene, propene etc.	
XS EC OV-A	organic gases and vapors like ethylene oxide,	230
	styrene isobutylene etc.	
XS EC O ₂ -LS	oxygen	232
XS 2 O ₂	oxygen	232
XS R O ₂	oxygen	232
XS EC O ₂ 100	oxygen	236
XS EC PH ₃ HC	hydrogen phosphide, phosphine	238
XS EC SO ₂	sulfur dioxide	240

DrägerSensor® XS EC Amine

Order no. 68 09 545

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	_

MARKET SEGMENTS

Foundries, refineries, power plants

TECHNICAL SPECIFICATIO	NS				
Detection limit:	2 ppm				
Resolution:	1 ppm				
Measurement range/	0 to 100 ppm CH ₃ NH ₂ (methylamine)	0.70			
Relative sensitivity	0 to 100 ppm (CH ₃) ₂ NH (dimethylamine) 0.50				
	0 to 100 ppm (CH ₃) ₃ N (trimethylamine)	0.50			
	0 to 100 ppm C ₂ H ₅ NH ₂ (ethylamine)	0.70			
	0 to 100 ppm (C ₂ H ₅) ₂ NH (diethylamine)	0.50			
	0 to 100 ppm (C ₂ H ₅) ₃ N (triethylamine)	0.50			
	0 to 100 ppm NH ₃ (ammonia)*	1.00			
Response time:	≤ 30 seconds (t ₅₀)				
Precision					
Sensitivity:	≤ ± 3% of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤ ± 2 ppm/month				
Sensitivity:	≤ ± 3% of measured value/month				
Warm-up time:	≤ 12 hours				
Ambient conditions					
Temperature:	(-40 to 50)°C (-40 to 122)°F				
Humidity:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	≤ ± 5 ppm				
Sensitivity:	≤ ± 5% of measured value				
Influence of humidity					
Zero point:	≤ ± 0.1 ppm/% RH				
Sensitivity:	≤ ± 0.2% of measured value/% RH				
Test gas:	approx. 5 to 100 ppm NH ₃ , or one of the oth	ner target gases:			
	C H ₃ NH ₂ , (CH ₃) ₂ NH, (CH ₃) ₃ N, C ₂ H ₅ NH ₂ ,	(C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N			

^{*} lead compound

Six different amines can be detected using this sensor. It is sufficient to calibrate it using an ammonia test gas. By doing so, all of the other amines are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of amine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃	
Acetone	cetone CH ₃ COCH ₃		No effect	
Acetylene	C ₂ H ₂	200 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 5(-)	
Carbon monoxide	СО	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 20(-)	
Ethene	C ₂ H ₄	1,000 ppm	≤ 3 ≤ 3	
Hydrogen	H ₂	1,000 ppm		
Hydrogen cyanide	HCN	25 ppm	≤ 3	
Hydrogen sulfide	H ₂ S	20 ppm 10 Vol. %	≤ 50 No effect ≤ 3	
Methane	CH ₄			
Methanol	CH₃OH	200 ppm		
Nitrogen dioxide	NO ₂	20 ppm	≤ 10 ⁽⁻⁾	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Phosphine	PH ₃	5 ppm	≤ 8	
Sulfur dioxide	SO ₂	20 ppm	No effect	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	<u>≤ 10</u>	

DrägerSensor® XS EC Cl₂

Order no. 68 09 165

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring hazardous material, pulp and paper, power generation, sewage plants water treatment.

Detection limit:	0.1 ppm				
Resolution:	0.05 ppm				
Measurement range/	0 to 20 ppm Cl ₂ (chlorine) 1.00				
Relative sensitivity	0 to 20 ppm F ₂ (fluorine) 1.00				
	0 to 20 ppm Br ₂ (bromine) 1.00				
	0 to 20 ppm ClO ₂ (chlorine dioxide) 0.60				
Response time:	≤ 30 seconds (t ₉₀)				
Precision					
Sensitivity:	≤ ± 2% of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤± 0.2 ppm/year				
Sensitivity:	≤ ± 2% of measured value/month				
Warm-up time:	≤ 1 hour				
Ambient conditions					
Temperature:	(-40 to 50)°C (-40 to 122)°F				
Humidity:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	≤ ± 0.1 ppm				
Sensitivity:	≤ ± 5% of measured value				
Influence of humidity					
Zero point:	No effect				
Sensitivity:	≤ ± 0.4% of measured value/% RH				
Test gas:	approx. 2 to 20 ppm Cl ₂ or one of the other target gases: F ₂ , Br ₂ , ClO ₂				

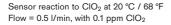
This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. It is sufficient to calibrate the sensor using a chlorine test gas; by doing so, all of the other target gases are then automatically calibrated.

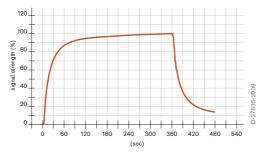
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm Cl ₂	
Acetylene	C ₂ H ₂	200 ppm	No effect	
Ammonia	NH ₃	50 ppm	≤ 0.5 ⁽⁻⁾	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	СО	100 ppm	No effect	
Ethene	C ₂ H ₄	1,000 ppm	No effect	
Hydrogen	H ₂	1,000 ppm	No effect ≤ 0.1 ≤ 0.1 ⁽⁻⁾	
Hydrogen cyanide	HCN	20 ppm		
Hydrogen sulfide	H ₂ S	20 ppm		
i-propanol (CH ₃) ₂ CHOH		1 Vol. %	No effect	
Methane	ethane CH ₄			
Methanol	CH₃OH	500 ppm	≤ 0.3 ⁽⁻⁾	
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.2	
Nitrogen monoxide	NO	25 ppm	No effect	
Phosphine	PH ₃	10 ppm	No effect	
Sulfur dioxide	ılfur dioxide SO ₂		≤ 0.2	
Tetrahydrothiophene C ₄ H ₈ S		1,000 ppm	No effect	

DrägerSensor® XS EC CIO₂

Order no. 68 11 360


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	1 year	_


MARKET SEGMENTS

Food and beverage, breweries, waste water treatment, swimming pools, industrial gases, pulp and paper.

TECHNICAL OF ECH TOATTO				
Detection limit:	0.02 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 20 ppm ClO ₂ (chlorine dioxide)			
Response time:	≤ 20 seconds (t ₅₀)			
Precision				
Sensitivity:	≤ ± 5% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.03 ppm/year			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.02 ppm			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	test gas 1 to 20 ppm CIO ₂			

The chlorine dioxide sensor is especially selective (see cross sensitivity table) and has a particularly low cross sensitivity to chlorine.

The values given in the table are standard an apply to new sensors, The values maybe fluctuate be \pm 30%. The sensor may also be sensitive to other gases (for information contact Dräger).

Gas mixtures can be displayed as the sum of all components. Gases with negative sensitivity may displace a positive display of chlorine dioxide. A check should be carried out to see if mixtures of gases are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CIO ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	1 ppm	≤ 0.1
Hydrogen	H ₂	1,000 ppm	≤ 0.02
Hydrogen cyanide	HCN	10 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.5(-)
Methane	CH ₄	1 Vol. %	No effect
Methanol	CH₃OH	500 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 1
Nitrogen monoxide	NO	20 ppm	≤ 0.05
Ozone	O ₃	0.5 ppm	≤ 0.05
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XS EC CO DrägerSensor® XS 2 CO DrägerSensor® XS R CO

Order no. 68 09 105 68 10 365 68 10 258

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	XS EC: 3	> 5 years
				> 3 years
			XS 2: 2	= 5 years (limited operation time)

Selective filter

D3T, 68 09 022 - replaceable for XS EC + XS R

A2T, 68 10 378 - replaceable for XS-2

Cross sensitivity of alcohols and acid gases (H₂S, SO₂) are eleminated.

The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	2 ppm for XS EC/XS 2/XS R			
Resolution:	1 ppm			
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)			
Response time:	≤ 35 seconds (t ₉₀) – XS EC			
	≤ 20 seconds (t ₉₀) - XS 2			
	≤ 30 seconds (t ₉₀) - XS R			
Precision				
Sensitivity:	\leq ± 1% of measured value – XS EC/XS 2/XS R			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 1 ppm/month − XS EC/XS 2			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 12 hours - XS EC/XS 2/XS R			
Ambient conditions				
Temperature:	(-20 to 50) °C (-4 to 122) °F - XS EC			
	(-40 to 50) °C (-40 to 122) °F - XS 2/XS R			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 5 ppm			
Sensitivity:	≤ ± 0.4% of measured value/K			
Influence of humidity				
Zero point:	≤ ± 0.02 ppm/% RH – XS EC			
	No effect – XS 2/XS R			
Sensitivity:	≤ ± 0.1% of measured value/% RH – XS EC/XS 2			
	≤ ± 0.05% of measured value/% RH – XS R			
Test gas:	approx. 10 to 2,000 ppm CO test gas			

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. Internal selective filters, some of which are replaceable, filter out the majority of accompanying gases such as alcohol and acidic gases like H₂S, SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC CO - 68 09 105

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 20	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 500	≤ 300
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	≤ 35	≤ 35
Chlorine	Cl ₂	20 ppm	≤ 1(-)	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Formaldehyde	НСНО	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤ 10	≤ 1(-)
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 12
Phosgene	COCl ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R CO - 68 10 258

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 20	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 500	≤ 300
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₆ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Formaldehyde	HCHO	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	_50 ppm	≤ 10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH₃OH	_175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 6
Phosgene	COCl ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 CO - 68 10 365

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 20	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 500	≤ 50
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H6	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	50 ppm	≤ 25	≤ 10
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Formaldehyde	HCHO	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH₃OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	No effect
Phosgene	COCl ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	No effect
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Tetrahydrothiophene	C ₄ H ₈ S	5 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

DrägerSensor® XS EC CO HC

Order no. 68 09 120

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	_

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	10 ppm		
Resolution:	5 ppm		
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)		
Response time:	≤ 10 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/month		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 10 ppm		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	50 to 10,000 ppm CO test gas		

Because of its excellent linearity, this sensor (measurement range 10,000 ppm) can be calibrated at the lower levels of its measurement range. It also offers very stable measurements, even at high concentrations and over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 30
Ammonia	NH ₃	200 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Chlorine	Cl ₂	20 ppm	≤ 8(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400
Ethene	C ₂ H ₄	20 ppm	≤ 50
Hydrogen	H ₂	0.1 Vol. %	≤ 400
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80
Methane	CH ₄	5 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 40
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 20
Sulfur dioxide	SO ₂	20 ppm	≤ 20
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 4

DrägerSensor® XS EC CO₂

Order no. 68 09 175

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.25 years	_

MARKET SEGMENTS

Waste disposal, Food and beverage, breweries, metal processing, petrochemicals, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	0.2 Vol. %		
Resolution:	0.1 Vol. %		
Measurement range:	0 to 5 Vol. % CO ₂ (carbon dioxide)		
Response time:	≤ 45 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 20% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.1 Vol. %/month		
Sensitivity:	≤ ± 15% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-20 to 40)°C (-4 to 104)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.01 Vol. %/K		
Sensitivity:	≤ ± 2% of measured value/K		
Influence of humidity			
Zero point:	≤ ± 0.005 Vol. %/% RH		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 0.5 to 4 Vol. % CO ₂ test gas		

This sensor is highly sensitive (see cross-sensitivity list) and offers an economical alternative to infrared sensors, if you need to warn against CO_2 concentrations in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of dioxide. To be sure, please check if gas mixtures are present.

Chem. symbol Concentration		Display in Vol. % CO ₂	
NH ₃	50 ppm	≤ 0.1 ⁽⁻⁾	
BCl ₃	15 ppm	No effect	
СО	100 ppm	No effect	
Cl ₂	5 ppm	≤ 0.1 ⁽⁻⁾	
C ₂ H ₅ OH	130 ppm	≤ 0.1(-)	
C ₂ H ₄	50 ppm	≤ 0.1(-)	
H ₂	1,000 ppm	≤ 0.1 ⁽⁻⁾	
HCI	20 ppm	≤ 0.1(-)	
PH ₃	5 ppm	≤ 0.1(-)	
H ₂ S	20 ppm	≤ 0.1 ⁽⁻⁾	
CH ₄	30 Vol. %	No effect	
CH₃OH	200 ppm	≤ 0.1 ⁽⁻⁾	
NO ₂	20 ppm	≤ 0.1 ⁽⁻⁾	
NO	20 ppm	≤ 0.1 ⁽⁻⁾	
SO ₂	20 ppm ≤ 0.1 ⁽⁻⁾		
	NH ₃ BCl ₃ CO Cl ₂ C ₂ H ₅ OH C ₂ H ₄ H ₂ HCl PH ₃ H ₂ S CH ₄ CH ₃ OH NO ₂ NO	NH ₃ 50 ppm BCl ₃ 15 ppm CO 100 ppm Cl ₂ 5 ppm C ₂ H ₅ OH 130 ppm C ₂ H ₄ 50 ppm H ₂ 1,000 ppm HCl 20 ppm PH ₃ 5 ppm H ₂ S 20 ppm CH ₄ 30 Vol. % CH ₃ OH 200 ppm NO 20 ppm	

DrägerSensor® XS EC COCl₂

Order no. 68 08 582

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	6 months	> 1 year	

MARKET SEGMENTS

Production of plastics, insecticides production, dyes.

TECHNICAL SPECIFICATIO				
Detection limit:	0.01 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 10 ppm COCl ₂ (phosgene)			
Response time:	\leq 20 seconds (t ₂₀)			
	≤ 40 seconds (t ₅₀)			
Precision				
Sensitivity:	≤ ± 10% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.01 ppm/month			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions				
Temperature:	(-20 to 40)°C (-4 to 104)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.001 ppm/K			
Sensitivity:	≤ ± 1% of measured value/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	3 to 10 ppm COCl ₂			

The XS Phosgene sensor is highly selective, especially against hydrogen chloride (HCI).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosgene. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm COCl ₂
Acetylene	C ₂ H ₂	20 ppm	No effect
Ammonia	NH ₃	20 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	СО	1,000 ppm	No effect
Chlorine	Cl ₂	0.5 ppm	≤ 0.2
Ethanol	C ₂ H ₅ OH	260 ppm	No effect
Hydrogen	H ₂	8,000 ppm	No effect
Hydrogen chloride	HCI	0.5 ppm	≤ 0.7
Hydrogen peroxide	H ₂ O ₂	1 ppm	No effect
Hydrogen sulfide	H ₂ S	1 ppm	≤1
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.1 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Ozone	O ₃	0.3 ppm	≤ 0.05 ⁽⁻⁾
Propanol	C ₃ H ₇ OH	500 ppm	No effect
Sulfur dioxide	SO ₂	2 ppm	No effect

DrägerSensor® XS EC H₂

Order no. 68 09 185

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Chemical, petrochemical, rocket fuel, leakages, production of plastics, metal processing, industrial gases, fertilizer production

Detection limit:	10 ppm		
Resolution:	5 ррт		
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)		
Response time:	≤ 20 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 4 ppm/month		
Sensitivity:	≤ ± 4% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 10 ppm		
Sensitivity:	≤ ± 1 ppm/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.15% of measured value/% RH		
Test gas:	approx. 200 to 1,800 ppm H ₂ test gas		

This sensor enables ppm concentrations of H_2 (hydrogen) to be measured in the ambient air. It has a very fast response time and is therefore especially suited to detect leakages.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 10
Acetylene	C ₂ H ₂	200 ppm	≤ 700
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	CO	100 ppm	≤ 130
Chlorine	Cl ₂	5 ppm	≤ 5(-)
Ethene	C ₂ H ₄	1,000 ppm	≤ 1800
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	20 ppm	≤ 20
Methane	CH ₄	50 Vol. %	No effect
Methanol	CH ₃ OH	500 ppm	≤ 750
Nitrogen dioxide	NO ₂	20 ppm	≤ 15(-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	10 ppm	≤ 40
Sulfur dioxide	SO ₂	20 ppm	≤ 15
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 10

DrägerSensor® XS EC H₂ HC

Order no. 68 11 365

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Ammonia synthesis, fuel refinement (hydrocracking), sulfur elimination, chemical, rocket fuel, leakage inspection, metal processing, industrial gases, fertilizer production, battery chargers, fuel cells.

Detection limit:	0.02 Vol. %			
Resolution:	0.01 Vol. %			
Measurement range:	0 to 4 Vol. % H ₂ (hydrogen)			
Response time:	≤ 20 seconds (t ₅₀)			
Precision	-			
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.05 Vol. %/year			
Sensitivity:	≤ ± 3% of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.05 Vol. %			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	0.2 to 4 Vol. % H ₂ test gas			

This sensor covers the entire range of LELs up to 4 Vol. % H₂, and is therefore the ideal addition when using IR technology in the Dräger X-am 7000 to measure for explosion risks. The sensor also offers high selectivity (see cross-sensitivity specifications) and linearity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Chem. symbol	Concentration	n Display in Vol. % H ₂	
C_2H_2	200 ppm	≤ 0.02	
NH ₃	500 ppm	No effect	
CO ₂	1.5 Vol. %	No effect	
СО	1,000 ppm	≤ 0.1	
Cl ₂	50 ppm	No effect	
C ₂ H ₅ OH	250 ppm	No effect	
C ₂ H ₄	1,000 ppm	≤ 0.1	
HCN	50 ppm	No effect	
H ₂ S	20 ppm	≤ 0.1	
CH ₄	1 Vol. %	No effect	
NO ₂	20 ppm	No effect	
NO	20 ppm	≤ 0.05	
PH ₃	5 ppm	≤ 0.02	
SO ₂	20 ppm	No effect	
	C ₂ H ₂ NH ₃ CO ₂ CO Cl ₂ C ₂ H ₅ OH C ₂ H ₄ HCN H ₂ S CH ₄ NO ₂ NO PH ₃	C ₂ H ₂ 200 ppm NH ₃ 500 ppm CO ₂ 1.5 Vol. % CO 1,000 ppm Cl ₂ 50 ppm C ₂ H ₅ OH 250 ppm C ₂ H ₄ 1,000 ppm HCN 50 ppm H ₂ S 20 ppm CH ₄ 1 Vol. % NO ₂ 20 ppm NO 20 ppm PH ₃ 5 ppm	

DrägerSensor® XS EC HCN

Order no. 68 09 150

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	

MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical war agent (blood agents).

Detection limit:	0.5 ppm					
Resolution:	0.1 ppm					
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)					
Response time:	≤ 10 seconds (t ₅₀)					
Precision	-					
Sensitivity:	≤ ± 5% of measured value					
Long-term drift, at 20°C (68°F)	-					
Zero point:	≤ ± 1 ppm/month					
Sensitivity:	≤ ± 5% of measured value/month					
Warm-up time:	≤ 15 minutes					
Ambient conditions						
Temperature:	(-20 to 50)°C (-4 to 122)°F					
Humidity:	(10 to 90)% RH					
Pressure:	(700 to 1,300) hPa					
Influence of temperature						
Zero point:	≤ ± 1 ppm					
Sensitivity:	≤ ± 5% of measured value					
Influence of humidity						
Zero point:	No effect					
Sensitivity:	≤ ± 0.1% of measured value/% RH					
Test gas:	3 to 50 ppm HCN					
	After long periods of exposure > 10 ppm HCN/hour, the sensor					
	should be recalibrated.					

The extremely quick response time of this sensor provides a fast and reliable warning against prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrogen cyanide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN	
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect	
Acetylene	C ₂ H ₂	200 ppm	≤ 20	
Ammonia	NH ₃	200 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	СО	1,000 ppm	≤ 0.5	
Chlorine	Cl ₂	10 ppm	≤ 10(-)	
Ethene	C ₂ H ₄	1,000 ppm	No effect	
Ethylene oxide	C ₂ H ₄ O	30 ppm	No effect	
Formaldehyde	НСНО	50 ppm	≤ 2	
Hydrogen	H ₂	1.6 Vol. %	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 5	
i-propanol	(CH ₃) ₂ CHOH	500 ppm	No effect	
Methane	CH ₄	20 Vol. %	No effect	
Methanol	CH₃OH	175 ppm	No effect	
Nitrogen dioxide	NO ₂	10 ppm	≤ 10(-)	
Nitrogen monoxide	NO	20 ppm	≤ 0.5	
Phosphine	PH ₃	5 ppm	≤ 25	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 0.5	

DrägerSensor® XS EC HF/HCI

Order no. 68 09 140

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5100	yes	yes	1 year	> 1.5 years	

MARKET SEGMENTS

Semiconductor, chemical

Detection limit:	1 ppm			
Resolution:	0.1 ppm			
Measurement range/	0 to 30 ppm HCl (hydrogen chloride) 1.00			
relative sensitivity	0 to 30 ppm HNO ₃ (nitric acid)	1.00		
	0 to 30 ppm HBr (hydrogen bromide)	1.00		
	0 to 30 ppm POCl ₃ (phosphoryl trichloride)	1.00		
	0 to 30 ppm PCl ₃ (phosphorous trichloride)	3.00		
	0 to 30 ppm HF (hydrogen fluoride)	0.66		
Response time:	≤ 60 seconds (t ₅₀)			
Precision				
Sensitivity:	≤ ± 15% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.5 ppm/month			
Sensitivity:	≤ ± 5% of measured value/month			
Warm-up time:	≤ 1 hour	_		
Ambient conditions				
Temperature:	(-20 to 40)°C (-4 to 104)°F			
Humidity:	(30 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	=			
Zero point:	≤ ± 0.5 ppm			
Sensitivity:	≤ ± 10% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 2% of measured value/% RH			
Test gas:	HCl test gas between 5 to 30 ppm; or one of the other target gases			
	HNO3, HBr, POCl3,PCl3, HF. Every time th	e sensor is used, the		
	following function test should be performed b	eforehand. Procedure:		
	hold the unit over a container containing a (9 ±	0.5) mol of acetic acid,		
	at room temperature. Evaluation: after 30 seconds, the figure displayed			
	should be greater than 0.5 ppm HCl. If the figure is less than 0.5 ppm,			
	then the sensitivity must be calibrated. A fun	ction test can also be		
	performed using the test gas.			

This sensor is used exclusively in the Dräger X-am 5100. This sensor can be used to monitor concentrations of hydrogen chloride (HCl), nitric acid (HNO₃), hydrogen bromide (HBr), phosphoryl trichloride (POCl₃), phosphorous trichloride (PCl₃) and HF (hydrogen fluoride) in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCl/HF. To be sure, please check if gas

RETUENSANT PORCESS-SENSITIVITIES

NH ₃	500 ppm	
	ooo ppiii	No effect
CO ₂	10 Vol. %	No effect
СО	150 ppm	No effect
Cl ₂	5 ppm	≤ 22
H ₂	1.5 Vol. %	No effect
HCN	20 ppm	≤ 9
H ₂ O ₂	O ₂ 20 ppm No e	
H ₂ S	30 ppm ≤ 2	
(CH ₃) ₂ CHOH	500 ppm	No effect
CH ₄	2 Vol. % No effect	
NO ₂	20 ppm ≤ 0.8	
NO	20 ppm ≤ 5	
SO ₂	20 ppm	≤ 20
	CO Cl ₂ H ₂ HCN H ₂ O ₂ H ₂ S (CH ₃) ₂ CHOH CH ₄ NO ₂	CO 150 ppm Cl ₂ 5 ppm H ₂ 1.5 Vol. % HCN 20 ppm H ₂ O ₂ 20 ppm (CH ₃) ₂ CHOH 500 ppm CH ₄ 2 Vol. % NO ₂ 20 ppm

^{*} Volatile alkaline substances (such as NH₃, amines) can impair the function of the sensor. If in doubt, perform a function test.

DrägerSensor® XS EC H₂S DrägerSensor® XS 2 H₂S DrägerSensor® XS R H₂S

Order no. 68 09 110

68 10 370

68 10 260

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	XS EC: 3 years XS 2: 2 years	> 5 years > 3 years	_
			XS R: 5 years	= 5 years (limited operation	time)

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	1 ppm for XS EC/XS /XS R		
Resolution:	0.1 ppm for XS EC/XS 2/XS R		
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)		
Response time:	≤ 20 seconds (t ₉₀) - XS R		
	≤ 25 seconds (t ₉₀) - XS EC		
	≤ 30 seconds (t ₉₀) - XS 2		
Precision			
Sensitivity:	\leq ± 2% of measured value - XS EC/XS R		
	≤ ± 1% of measured value - XS 2		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/year - XS EC/XS R		
	≤ ± 1 ppm/month - XS 2		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 12 hours - XS EC / XS 2 / XS R		
Ambient conditions			
Temperature*:	(-20 to 50)°C (-4 to 122)°F - XS EC		
	(-40 to 50)°C (-40 to 122)°F - XS 2/XS R		
Humidity*:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm - XS EC/XS microPac, ≤ ± 2 ppm - XS 2/XS R		
Sensitivity:	≤ ± 5% of measured value - XS EC/XS 2/XS R		
Influence of humidity			
Zero point:	≤ ± 0.02 ppm/% RH - XS EC/XS 2, no effect - XS R		
Sensitivity:	\leq ± 0.05% of measured value/% RH - XS EC/XS 2/XS R		
Test gas:	approx. 5 to 100 ppm H ₂ S test gas		

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

These sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide only has a minor effect on hydrogen sulfide readings. This, therefore, enables the selective measurement of hydrogen sulfide alongside sulfur dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2S . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC H₂S

Gas/vapor	apor Chem. symbol Concentration		Display in ppm H₂S
Acetone	CH₃COCH₃	1,000 ppm	≤ 4
Acetylene	C_2H_2	0.6 Vol. %	≤ 10
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 1(-)
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	СО	125 ppm	≤ 3
Chlorine	Cl ₂	20 ppm	≤ 2(-)
Dimethyldisulfide	CH₃SSCH₃	20 ppm	≤ 13
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 6
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2
Ethanethiol	C ₂ H ₅ SH	20 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	≤ 10
Gasoline	_	0.55 Vol. %	No effect
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	≤ 10
Methylmercaptane	CH₃SH	20 ppm	≤ 15
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 10
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect
Phosphine	PH ₃	5 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol. %	No effect
Propene	C ₃ H ₆	0.5 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 4
sec-Butylmercaptan	C ₄ H ₁₀ SH	20 ppm	≤ 7
Tetrahydrothiophene	C ₄ H ₅ S	20 ppm	≤ 4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
tert-Butylmercaptane	(CH ₃) ₃ CSH	20 ppm	≤ 10
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. % ≤ 4	

⁽⁻⁾ Indicates negative deviation

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetone	CH₃COCH₃	1,000 ppm	≤4
Acetylene	C ₂ H ₂	0.6 Vol. %	≤10
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	125 ppm	≤3
Chlorine	Cl ₂	20 ppm	≤2(-)
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤2
Ethanethiol	C₂H₅SH	10 ppm	≤5
Ethene	C ₂ H ₄	1,000 ppm	≤10
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	≤10
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤10
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤5
Propane	C ₃ H ₈	1 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤4
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. % ≤4	

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetone	CH₃COCH₃	1,000 ppm	≤ 4
Acetylene	C ₂ H ₂	0.6 Vol. %	≤ 10
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	125 ppm	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 2(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	≤ 10
Gasoline	_	0.55 Vol. %	No effect
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	≤ 10
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 10
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol. %	No effect
Propene	C ₃ H ₆	0.5 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤ 4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4

DrägerSensor® XS EC H₂S HC

Order no. 68 09 180

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	_

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	5 ppm
Resolution:	1 ppm
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)
Response time:	≤ 20 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 5% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 3 ppm/month
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	
Temperature*:	(-40 to 50)°C (-40 to 122)°F
Humidity*:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	≤ ± 0.1 ppm/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	20 to 1,000 ppm H ₂ S test gas

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2S . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm H ₂ S
Acetone	CH₃COCH₃	1,000 ppm	≤ 4
Acetylene	C ₂ H ₂	0.6 Vol. %	≤ 10
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	СО	125 ppm	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 2(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	≤ 10
Gasoline	_	0.55 Vol. %	No effect
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	500 ppm	≤ 20
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 10
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol. %	No effect
Propene	C ₃ H ₆	0.5 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 2
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. % ≤ 4	

DrägerSensor® XS EC H₂O₂

Order no. 68 09 170

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5100	no	yes	1 year	> 2 years	_

MARKET SEGMENTS

Disinfection and sterilization, bleaching, decontaminating interior spaces.

NS .
0.1 ppm
0.1 ppm
0 to 20 ppm H ₂ O ₂ (hydrogen peroxide)
≤ 60 seconds (t ₉₀)
≤ ± 10% of measured value
≤ ± 1 ppm/year
≤ ± 2% of measured value/month
≤ 12 hours
(0 to 50)°C (32 to 122)°F
(10 to 90)% RH
(700 to 1,300) hPa
≤ ± 1 ppm
≤ ± 0.5% of measured value/K
≤ ± 0.01 ppm/% RH
≤ ± 0.1% of measured value/% RH
Alternatively, the sensor can be calibrated with 10 ppm SO ₂ . Such surrogate calibration with SO ₂ can lead to an additional measuring error of up to 30 %.
Following a surrogate calibration or sensor change, the following bump test must be performed (at 20 °C to 30 °C):
Add 15 mL of a 3 % hydrogen peroxide solution into a 25-mL beaker. Hold the device above the container.
Evaluation: After a maximum of 30 seconds, the reading must be greater than 1 ppm H_2O_3 . If the value displayed is less than 1 ppm H_2O_3 , a new H_2O_3 solution must be used or a calibration carried out.

This sensor is used in the Dräger X-am 5100 to monitor the H_2O_2 (hydrogen peroxide) concentration in the ambient air. It offers high sensitivity (see cross-sensitivity table).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2O_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ O ₂
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 35
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	СО	125 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 1(-)
Ethene	C ₂ H ₄	50 ppm	No effect
Hydrogen	H ₂	1.5 Vol. %	≤ 5
Hydrogen chloride	HCI	15 ppm	≤ 3
Hydrogen cyanide	HCN	25 ppm	≤ 7
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80
i-propanol	(CH ₃)CHOH	500 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 15 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 15
Sulfur dioxide	SO ₂	20 ppm	≤ 7
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5

DrägerSensor® XS EC Hydrazine

Order no. 68 09 190

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5100	no	yes	1 year	> 1 year	_

MARKET SEGMENTS

Rocket fuel, aircraft fuel (e.g. F-16), fuel for emergency power generators, for electrochemical power generation in secondary cells or in alkaline fuel cells, especially in space travel, submarines, and other military equipment.

TECHNICAL SI ECH ICATIO	113	
Detection limit:	0.02 ppm	
Resolution:	0.01 ppm	
Measurement range:	0 to 5 ppm N ₂ H ₄ (hydrazine)	1
	0 to 5 ppm CH ₃ NH-NH ₂ (methyl hydrazine)	0.6
	0 to 5 ppm (CH ₃) ₂ N-NH ₂ (dimethylhydrazine)	0.6
Response time:	≤ 180 seconds (t ₉₀)	
Precision		
Sensitivity:	≤ ± 5% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.01 ppm/month	
Sensitivity:	≤ ± 5% of measured value/month	
Warm-up time:	≤ 1 hour	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(15 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	No effect	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	0.1 to 3 ppm N ₂ H ₄ , CH ₃ NH-NH ₂ , (CH ₃) ₂ N-NH ₂	2

This sensor is used exclusively in the Dräger X-am 5100 for monitoring concentrations of hydrazine (N_2H_4) , methyl hydrazine (CH_3NH-NH_2) , and dimethylhydrazine $((CH_3)_2N-NH_2)$.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrazine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm N ₂ H ₄
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	250 ppm	≤ 2.5
Carbon dioxide	CO ₂	100 Vol. %	No effect
Carbon monoxide	СО	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 0.1(-)
Ethanol	C ₂ H ₅ OH	130 ppm	No effect
Ethene	C ₂ H ₄	20 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.25
i-propanol	(CH ₃) ₂ CHOH	1,000 ppm No effect	
Methane	CH ₄	3 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0,05
Nitrogen monoxide	NO	25 ppm	≤ 0.05
Propane	C ₃ H ₈	1.5 Vol. %	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect

DrägerSensor® XS EC Hydride

Order no. 68 09 135

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	-
				> 1 year for B ₂ H ₆ and GeH ₄	

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurement.

Detection limit:	0.02 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 20 ppm PH ₃ (hydrogen phosphide)	0 to 20 ppm PH ₃ (hydrogen phosphide) 1.00		
	0 to 20 ppm AsH ₃ (arsine)	0.85		
	0 to 1 ppm B ₂ H ₆ (diborane)	0.40		
	0 to 20 ppm GeH ₄ (germanium tetrahydride)	0.95		
	0 to 50 ppm SiH ₄ (silane)	0.95		
	0 to 10 ppm H ₂ Se (hydrogen selenide)*	0.40		
Response time:	≤ 10 seconds (t ₉₀) for PH ₃ , B ₂ H ₆ , SiH ₄			
	≤ 20 seconds (t ₉₀) for AsH ₃ , GeH ₄ , H ₂ Se			
Precision				
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°	PF)			
Zero point:	≤ ± 0.02 ppm/month			
Sensitivity:	≤ ± 2% of measured value/month for PH ₃ , AsH ₃			
	≤ ± 3% of measured value/month for SiH ₄			
	≤ ± 5% of measured value/month for B ₂ H ₆ , GeH ₄ , H ₂ Se			
Warm-up time:	≤ 15 minutes			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
	(0 to 40)°C (32 to 104)°F for H ₂ Se			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.02 ppm			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	≤ ± 0.02 ppm			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	0.2 to 10 ppm H ₂ Se			
	0.2 to 20 ppm PH_3 , AsH_3 or GeH_4			
	0.2 to 50 ppm SiH ₄			
	0.1 to 1 ppm B ₂ H ₆			

^{*}with limited temperature range: 0 to 40°C dry test gas

This sensor can be used to monitor the concentration of PH_3 (hydrogen phosphide), AsH_3 (arsine), B_2H_6 (diborane), GeH_4 (germanium tetrahydride) or SiH_4 (silane) in the ambient air. It is sufficient to calibrate the sensor using a PH_3 test gas; by doing so all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydride. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Acetone	CH₃COCH₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 12
Ammonia	NH ₃	250 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	СО	150 ppm	≤ 0.1
Chlorine	Cl ₂	10 ppm	≤ 2(-)
Ethene	C ₂ H ₄	1,000 ppm	≤ 0,2
Formaldehyde	НСНО	50 ppm	≤ 0.15
Hydrogen	H ₂	1,000 ppm	≤ 0.25
Hydrogen cyanide	HCN	50 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
i-propanol	(CH ₃) ₂ CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH₃OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 2
Methane Methanol Nitrogen dioxide Nitrogen monoxide	CH ₄ CH ₃ OH NO ₂ NO	4 Vol. % 200 ppm 20 ppm 20 ppm	No effect No effect ≤ 5 ⁽⁻⁾ No effect

DrägerSensor® XS EC NH₃

Order no. 68 09 145

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, analysis of chemical war agents, hazmat, fumigation, metal processing, petrochemicals, pulp and

	_
Detection limit:	3 ррт
Resolution:	1 ppm
Measurement range:	0 to 300 ppm NH ₃ (ammonia)
Response time:	≤ 20 seconds (t ₅₀)
Precision	
Sensitivity:	≤ ± 3% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/month
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	
Temperature*:	(-40 to 50)°C (-40 to 122)°F
Humidity*:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	≤ ± 0.1 ppm/% RH
Sensitivity:	≤ ± 0.2% of measured value/% RH
Test gas:	approx. 10 to 150 ppm NH ₃

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

The quick response time of this sensor provides a fast and reliable warning against ammonia.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH3. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 5(-)
Carbon monoxide	СО	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 20 ⁽⁻⁾
Ethene	C ₂ H ₄	1,000 ppm	≤ 3
Hydrogen	H ₂	1,000 ppm	≤ 3
Hydrogen cyanide	HCN	25 ppm	≤ 3
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50
Methane	CH ₄	10 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤ 3
Nitrogen dioxide	NO ₂	20 ppm	≤ 10 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	≤ 10
Phosphine	PH ₃	5 ppm	≤ 8
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 10

DrägerSensor® XS EC NO

Order no. 68 09 125

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Power plants, district heating plants

Detection limit:	1 ppm
Resolution:	0.5 ppm
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)
Response time:	≤ 30 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 3% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/month
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 18 hours
Ambient conditions	- -
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 0.01 ppm/K
Sensitivity:	≤ ± 0.2% of measured value/K
Influence of humidity	
Zero point:	≤ ± 0.01 ppm/% RH
Sensitivity:	≤ ± 0.05% of measured value/% RH
Test gas:	approx. 1 to 200 ppm NO test gas

This sensor enables a selective measurement of NO. It also offers a very fast response time and excellent linearity across its entire measurement range.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO
Acetone	CH₃COCH₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	0.8 Vol. %	≤ 2
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	СО	2,000 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	0.1 Vol. %	No effect
Hydrogen	H ₂	5 Vol. %	≤ 2
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	5 ppm	≤ 5
Methane	CH ₄	2 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Phosphine	PH ₃	2 ppm	≤ 2
Propane	C ₃ H ₈	1 Vol. %	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 2
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect

DrägerSensor® XS EC NO₂

Order no. 68 09 155

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemicals, steel, shipping, rocket engineering, mining and tunneling.

	_
Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)
Response time:	≤ 15 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/month
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 1 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.2% of measured value/% RH
Test gas:	approx. 1 to 50 ppm NO ₂ test gas

This sensor offers a fast response time and stable readings, even after experiencing high concentrations of nitrogen dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂
Acetaldehyde	CH₃CHO	500 ppm	No effect
Acetone	CH₃COCH₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 60(-)
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	2.5 Vol. %	No effect
Carbon monoxide	СО	125 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 10
Ethene	C ₂ H ₄	1,000 ppm	≤ 1(-)
Formaldehyde	HCHO	50 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2(-)
Hydrogen cyanide	HCN	50 ppm	≤ 10 ⁽⁻⁾
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100(-)
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	175 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 25(-)
Sulfur dioxide	SO ₂	50 ppm	≤ 50(-)
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5(-)

DrägerSensor® XS EC Odorant

Order no. 68 09 200

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	1 year	> 2 years

Selective filter

B2T, 68 09 198 - replaceable

Cross sensitivities from acidic gases (H₂S, SO₂) are largely eliminated.

The filter's service life can be calculated as follows: 40 ppm x hours of contaminant gas. Example: Given constant concentration of 1 ppm H_2S will be: Service life = 40 ppm x hours / 1 ppm = 40 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Gas supply companies

Detection limit:	1 ppm				
Resolution:	0.5 ppm				
Measurement range	0 to 40 ppm C ₄ H ₈ S (tetrahydrothiophene)	1.00			
relative sensitivity	0 to 40 ppm (CH ₃) ₃ CSH (t-butyl mercaptan) 1.60				
	0 to 40 ppm C ₂ H ₅ CH(CH ₃)SH (sec-butyl mercaptan)	1.60			
	0 to 40 ppm CH ₃ SH (methyl mercaptan)	2.00			
	0 to 40 ppm C ₂ H ₅ SH (ethyl mercaptan)	1.50			
	0 to 100 ppm (CH ₃) ₂ S (dimethyl sulfide)	1.20			
	0 to 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)	0.33			
Response time:	≤ 90 seconds (t ₉₀)				
Precision					
Sensitivity:	≤ ± 5% of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤ ± 1 ppm/month				
Sensitivity:	≤ ± 3% of measured value/month				
Warm-up time:	≤ 12 hours				
Ambient conditions	-				
Temperature*:	(-20 to 50)°C (-4 to 122)°F for THT, TBM, SBM				
	(5 to 40)°C (32 to 104)°F for MeM, EtM, DMS, DMDS				
Humidity*:	(0 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	≤ ± 1 ppm				
Sensitivity:	≤ ± 5% of measured value				
Influence of humidity					
Zero point:	≤ ± 0.01 ppm/% RH				
Sensitivity:	≤ ± 0.1% of measured value/% RH				
Test gas:	2 to 20 ppm THT or of one of the other target gases: (CH ₃) ₃ CSH,				
-	C ₂ H ₅ CH(CH ₃)SH, CH ₃ SH, C ₂ H ₅ SH, (CH ₃) ₂ S, CH ₃ SSCH ₃				

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of THT. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 3	≤ 3
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	No effect
Carbon monoxide	CO	125 ppm	≤ 3	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 3 ⁽⁻⁾	No effect
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2	≤ 2
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 30	No effect
Methane	CH ₄	100 Vol. %	No effect	No effect
Methanol	CH₃OH	175 ppm	≤ 8	≤ 8
Nitrogen dioxide	NO ₂	20 ppm	≤ 2	≤ 2
Nitrogen monoxide	NO	20 ppm	≤ 30	≤ 30
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤ 4	≤ 4
Phosphine	PH ₃	5 ppm	≤ 15	≤ 15
Sulfur dioxide	SO ₂	20 ppm	≤ 15	No effect

DrägerSensor® XS EC OV

Order no. 68 09 115

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Production of plastics, painter, chemical industry, disinfection, pest control.

TECHNICAL SPECIFICATIO	/NO				
Detection limit:	1 ppm				
Resolution:	0.5 ppm				
Measurement range/	0 to 200 ppm C ₂ H ₄ O (ethylene oxide) 1.00				
relative sensitivity	0 to 200 ppm C ₃ H ₆ O (propylene oxide)	0.80			
	0 to 100 ppm C ₂ H ₄ (ethene)	1.10			
	0 to 100 ppm C ₃ H ₆ (propene)	0.70			
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride)	0.80			
	0 to 200 ppm CH ₃ OH (methanol)	1.20			
	0 to 300 ppm C ₂ H ₅ OH (ethanol)	0.60			
	0 to 200 ppm CH ₃ CHO (acetaldehyde)	0.30			
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene)	1.20			
	0 to 100 ppm HCHO (formaldehyde)	1.00			
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)	0.80			
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol)	0.30			
Response time:	≤ 90 seconds (t ₅₀)				
Precision					
Sensitivity:	≤ ± 5% of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤ ± 2 ppm/month				
Sensitivity:	≤ ± 5% of measured value/month				
Warm-up time:	≤ 18 hours				
Ambient conditions					
Temperature:	(-20 to 50)°C (-4 to 122)°F				
Humidity:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	≤ ± 0.1 ppm/K at (-20 to 40)°C (-4 to 104)°F				
Zero point:	≤ ± 1 ppm/K at (40 to 50)°C (104 to 122)°F				
Sensitivity:	≤ ± 1% of measured value/K				
Influence of humidity					
Zero point:	No effect				
Sensitivity:	≤ ± 0.2% of measured value/% RH				
Test gas:	$\frac{1}{5}$ to 100 ppm C_2H_4 , C_3H_6 , C_2H_3CI , CH_2CHC	CHCH ₂ , HCHO,			
	CH ₃ COOC ₂ H ₃				
	5 to 200 ppm C ₂ H ₄ O, C ₃ H ₆ O, CH ₃ OH				
	10 to 200 ppm CH ₃ CHO				
	20 to 300 ppm C ₂ H ₅ OH, (H ₃ C) ₂ CHOH				

This sensor is especially suited to detect leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors. Furthermore, for the majority of gases it is enough to calibrate it using ethylene oxide, whereby all other gases are automatically calibrated as well. The exceptions are ethyne, tetrahydrofuran, and diethyl ether, which have to be calibrated using the target gas. The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
Acetic acid	CH₃COOH	100 ppm	No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	100 ppm	≤ 56
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Gasoline, F 50	-	700 ppm	≤ 20
Gasoline,	_	0.5 Vol. %	≤ 3
FAM regular gasoline			
Gasoline, premium unleaded	-	700 ppm	≤ 70
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH ₃ SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Propane	C ₃ H ₈	1 Vol. %	_ ≤ 3
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.2 Vol. %	No effect

This sensor is not suitable for monitoring the limit values of ethylene oxide, propylene oxide, butadiene, formaldehyde, vinyl acetate or vinyl chloride.

DrägerSensor® XS EC OV-A

Order no. 68 09 522

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	_

MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry.

Detection limit:	5 ppm			
Resolution:	0.5 ppm			
Measurement range/	0 to 100 ppm C ₂ H ₄ O (ethylene oxide)	1.00		
relative sensitivity	0 to 100 ppm H ₂ CCHCN (acrylonitrile)	0.10		
	0 to 100 ppm C ₆ H ₅ CHCH ₂ (styrene)	0.50		
	0 to 100 ppm H ₂ CC(CH ₃)COOCH ₃ (methyl methacrylate)	0.30		
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	0.70		
	0 to 100 ppm C ₂ H ₃ OCH ₂ Cl (epichlorohydrin)	0.4		
Response time:	≤ 90 seconds (t ₅₀) for EO, iBut, CIPO			
	≤ 300 seconds (t ₅₀) for ACN, MMA, Styr			
Precision				
Sensitivity:	≤ ± 20% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/month			
Sensitivity:	≤ ± 10% of measured value/month			
Warm-up time:	≤ 18 hours			
Ambient conditions				
Temperature:	(-20 to 55)°C (-4 to 131)°F for EO, iBut, Styr, CIPO			
	(5 to 40)°C (41 to 104)°F for ACN, MMA			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.2 ppm/K			
Sensitivity:	≤ ± 1% of measured value/K			
Influence of humidity				
Zero point:	≤ ± 0.1 ppm/% RH			
Sensitivity:	≤ ± 0.2% of measured value/% RH			
Test gas:	5 to 200 ppm C ₂ H ₄ O, C ₂ H ₃ OCH ₂			
	10 to 100 ppm H ₂ CCHCN, C ₆ H ₅ CHCH ₂ , H ₂ CC(CH ₃)COOCH ₃ ,			
	20 to 300 ppm (CH ₃) ₂ CCH ₂			

The DrägerSensor® XS OV-A has the same excellent insensitivity to moisture that the other Dräger-Sensor® XS OVs have, but it has also been optimized for other organic gases and vapors. Target gas calibration is required for all gases.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

Gas/vapor	as/vapor Chem. symbol		Display in ppm C₂H₄O
Acetic acid	CH₃COOH	100 ppm	No effect
Acetone	CH₃COCH₃	1,000 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	30 ppm	≤ 15
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethyl acetate	CH₃COOC₂H₅	100 ppm	No effect
Gasoline, F 50	-	700 ppm	≤ 20
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH₃SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect

DrägerSensor® XS EC O₂-LS DrägerSensor® XS 2 O₂ DrägerSensor® XS R O₂

Order no. 68 09 130

68 10 375

68 10 262

Used in	Plug & Play	Replaceable	Guaranty*	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	XS EC: 3 years	> 5 years	_
			XS 2: 2 years	> 3 years	
			XS R: 5 years	= 5 years	
				(limited operation	on time)

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, measuring hazmat, industrial gases.

Detection limit:	0.1 Vol. %		
Resolution:	0.1 Vol. %		
Measurement range:	0 to 25 Vol. % O ₂ (oxygen)		
Response time:	≤ 25 seconds (t ₉₀) - XS EC		
	≤ 20 seconds (t ₉₀) - XS 2 / XS R		
Precision			
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.5 Vol. %/year		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.4 Vol. % XS EC		
	≤ ± 0.2 Vol. % XS 2 / XS R		
Sensitivity:	≤ ± 2% of measured value XS EC		
	\leq ± 1% of measured value XS R / XS 2		
Influence of humidity			
Zero point:	≤ ± 0.002 Vol. %/% RH – XS EC		
	No effect – XS 2 / XS R		
Sensitivity:	\leq ± 0.1% of measured value/% RH		
Test gas:	N ₂ (zero gas)		
	11.5 to 23.0 Vol. % O ₂		

DrägerSensor® XS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have a much longer life spans than sensors that are consuming.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC O₂ LS

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Acetylene	C ₂ H ₂	0.5 Vol. %	≤ 0.2(-)
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5(-)
Hydrogen	H ₂	1 Vol. %	≤ 1.6 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

Chem. symbol	Concentration	Display in Vol. % O ₂
C_2H_2	0.5 Vol. %	≤ 0.2(-)
Cl ₂	20 ppm	No effect
CO ₂	5 Vol. %	No effect
СО	0.5 Vol. %	≤ 0.3(-)
C ₂ H ₆	5 Vol. %	No effect
C ₂ H ₅ OH	1 Vol. %	≤ 0.2 ⁽⁻⁾
C ₂ H ₄	2 Vol. %	≤ 0.5(-)
H ₂	1 Vol. %	≤ 1.6(-)
HCI	40 ppm	No effect
H ₂ S	100 ppm	No effect
CH ₄	10 Vol. %	No effect
NO ₂	50 ppm	No effect
NO	100 ppm	No effect
C ₃ H ₈	2 Vol. %	No effect
SO ₂	50 ppm	No effect
	C ₂ H ₂ Cl ₂ CO ₂ CO C ₂ H ₆ C ₂ H ₅ OH C ₂ H ₄ H ₂ HCI H ₂ S CH ₄ NO ₂ NO C ₃ H ₈	C2H2 0.5 Vol. % Cl2 20 ppm CO2 5 Vol. % CO 0.5 Vol. % C2H6 5 Vol. % C2H5OH 1 Vol. % C2H4 2 Vol. % H2 1 Vol. % HCI 40 ppm H2S 100 ppm CH4 10 Vol. % NO2 50 ppm NO 100 ppm C3H8 2 Vol. %

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R O₂

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Acetylene	C ₂ H ₂	0.5 Vol. %	≤ 0.2 ⁽⁻⁾
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3 ⁽⁻⁾
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2 ⁽⁻⁾
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

DrägerSensor® XS EC O₂ 100

Order no. 68 09 550

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	3 years	_

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.

TECHNICAL SPECIFICATIO	113		
Detection limit:	0.5 Vol. %		
Resolution:	0.5 Vol. %		
Measurement range:	0 to 100 Vol. % O ₂ (oxygen)		
Response time:	≤ 5 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.5 Vol. %/year		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(0 to 45)°C (32 to 133)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,100) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.01% of measured value/% RH		
Test gas:	N ₂ (zero gas)		
	10 to 100 Vol. % O ₂		

This sensor can be used for measuring oxygen concentrations of up to 100 Vol. % O₂ in the ambient air. The principle upon which the sensor is based is the measurement of the partial oxygen pressure, which means it can also measure oxygen in inert gases like nitrogen, argon, and helium.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in Vol. %O ₂
Carbon dioxide	CO ₂	5 Vol. %	≤ 1(-)
Chlorine	Cl ₂	20 ppm	No effect
Helium	He	50 Vol. %	≤ 1(-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	0.05 Vol. %	≤ 1(-)
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

DrägerSensor® XS EC PH₃ HC

Order no. 68 09 535

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	3 years	_

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurements.

TECHNICAL SPECIFICATIO	/NS		
Detection limit:	2 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 1,000 ppm PH ₃ (phosphine)		
Response time:	≤ 10 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 4 to 1,000 ppm PH ₃		

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower levels of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosphine. To be sure, please check if gas mixtures are present.

Gas/vapor Chem. symbol		Concentration	Display in ppm PH ₃
Acetone	CH₃COCH₃	1.25 Vol. %	No effect
Ammonia	NH ₃	50 ppm	No effect
Arsine	AsH ₃	5 ppm	≤ 4
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	СО	300 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Diborane	B ₂ H ₆	5 ppm	≤ 3
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	200 ppm	No effect
Germanium tetrahydride	GeH ₄	5 ppm	≤ 5
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	25 ppm	≤ 2
Hydrogen selenide	H ₂ Se	5 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
i-propanol	(CH ₃)CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH₃OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	No effect
Silane	SiH ₄	5 ppm	≤ 5
Sulfur dioxide	SO ₂	10 ppm	≤ 2
Toluene	C ₆ H ₅ CH ₃	1 Vol. %	No effect
Trimethylboron	B(CH ₃) ₃	1 ppm	No effect

DrägerSensor® XS EC SO₂

Order no. 68 09 160

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	1 year	> 2 years

Selective filter

K1T, 68 09 163 - replaceable

Eliminates cross-sensitivity to hydrogen sulfide (H₂S).

The filter's service life can be calculated as follows: 2,000 ppm x hours of contaminant gas. Example: Given constant concentration of 1 ppm H₂S will be: Service life = 2,000 ppm x hours/1 ppm = 2,000 hours.

The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Food industry, pest control, mining, oil and gas, petrochemicals, pulp and paper, shipping, steel

Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)
Response time:	≤ 20 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/month
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 1 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	≤ ± 0.002 ppm/% RH
Sensitivity:	≤ ± 0.2% of measured value/% RH
Test gas:	approx. 1 to 100 ppm SO ₂ test gas

In addition to a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The K1T selective filter (order no. 68 09 163) is an accessory for the DrägerSensor® XS EC SO_2 and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 2,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm it can be used for 2,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂ without selective filter
Acetaldehyde	CH₃CHO	500 ppm	No effect
Acetone	CH₃COCH₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	≤ 60
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	125 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 5(-)
Ethene	C ₂ H ₄	50 ppm	No effect
Formaldehyde	HCHO	50 ppm	≤1
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen	H ₂	1,000 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100
Methane	CH ₄	2 Vol. %	No effect
Methanol	CH₃OH	175 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 20 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 50
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5

CONTENTS XXS SENSORS

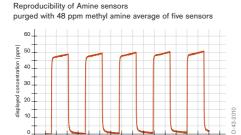
DrägerSensor® XXS	Chemical name (synonym)	
XXS Amine	amine like methylamine, ethylamine,	244
	dimethylamine etc.	
XXS Cl ₂	chlorine	246
XXS CO	carbon monoxide	248
XXS E CO	carbon monoxide	248
XXS CO LC	carbon monoxide	250
XXS CO HC	carbon monoxide	252
XXS CO H ₂ -CP	carbon monoxide/hydrogen	254
XXS CO ₂	carbon dioxide	256
XXS COCI ₂	phosgene	258
XXS H ₂	hydrogen	260
XXS H ₂ HC	hydrogen	262
XXS HCN	hydrogen cyanide	264
XXS HCN PC	hydrogen cyanide	266
XXS H ₂ S	hydrogen sulfide	268
XXS E H ₂ S	hydrogen sulfide	268
XXS H ₂ S HC	hydrogen sulfide	270
XXS H ₂ S LC	hydrogen sulfide	272
XXS H ₂ S/CO	hydrogen sulfide/carbon monoxide	274
XXS H ₂ S LC/CO LC	hydrogen sulfide/carbon monoxide	276
XXS NH ₃	ammonia	278
XXX NO	nitrogen monoxide	280
XXS NO ₂	nitrogen dioxide	282
XXS NO ₂ LC	nitrogen dioxide	284
XXS OV	organic vapors like ethylene oxide,	286
	ethene, propene, styrene etc.	
XXS OV-A	organic vapors like acrylonitrile, vinyl acetate etc.	290
XXS O ₂	oxygen	294
XXS E O ₂	oxygen	294
XXS O ₂ PR	oxygen (Poison Resistant)	296
XXS O ₂ /CO LC	oxygen/carbon monoxide	298
XXS O ₂ /H ₂ S LC	oxygen/hydrogen sulfide	300
XXS O ₂ 100	oxygen	302
XXS Odorant	sulfur compounds like THT, mercaptans	304
XXS Ozone	Ozone	306
XXS PH ₃	hydrogen phosphide, arsine, diborane, silane	308
XXS PH ₃ HC	hydrogen phosphide	310
XXS SO ₂	sulfur dioxide	312

DrägerSensor® XXS Amine

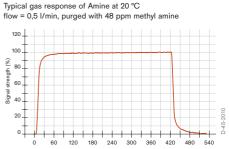
Order no. 68 12 545

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	no	yes	1 year	> 1.5 years	no
Dräger X-am 5600	no	yes	1 year	> 1.5 years	no
Dräger X-am 8000	no	yes	1 year	> 1.5 years	no

MARKET SEGMENTS


Foundries, refineries, power plants

Detection limit:	2 ppm	
Resolution:	1 ppm	
Measurement range/	0 to 100 ppm CH ₃ NH ₂ (methylamine)	0.70
relative sensitivity	0 to 100 ppm (CH ₃) ₂ NH (dimethylamine)	0.50
relative sensitivity	0 to 100 ppm (CH ₃) ₃ N (trimethylamine)	0.50
	0 to 100 ppm C ₂ H ₅ NH ₂ (ethylamine)	0.70
	0 to 100 ppm $(C_2H_5)_2NH$ (diethylamine)	0.50
	0 to 100 ppm (C ₂ H ₅) ₃ N (triethylamine)	0.50
	NH ₃ (ammonia)*	1.00
Response time:	≤ 30 seconds (t ₉₀)	1.00
Precision		
Sensitivity:	≤ ± 5 % of measured value	
Long-term drift, at 20°C (68°F)	-	
Zero point:	≤ ± 2 ppm/month	
Sensitivity:	≤ ± 3 % of measured value/month	
Warm-up time:	≤ 12 hours	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90) % RH.	
Pressure:	(700 to 1300) hPa	
Influence of temperature		
Zero point:	_ ≤ ± 5 ppm	
Sensitivity:	≤ ± 5 % of measured value	
Influence of humidity		
Zero point:	≤ ± 0.1 ppm / % RH	
Sensitivity:	≤ ± 0.2 % of measured value/% RH	
Test gas:	approx. 5 to 90 ppm NH ₃	


⁺ lead compound

500 1000 1500 2000 2500 3000 3500 4000

This sensor is suitable for monitoring concentration of six different amines in ambient air. A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

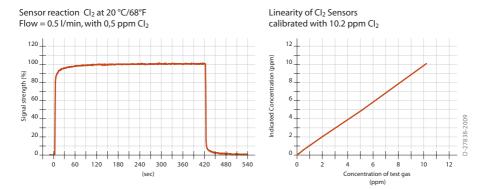
(sec)

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH $_3$. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH₃COCH₃	1000 ppm	No effect
Acetylene	C ₂ H ₂	200 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	≤5 ppm (-)
Carbon monoxide	СО	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤20 ppm (-)
Diethanolamine	C ₄ H ₁₁ NO ₂	10 ppm	5 ppm
Ethene	C ₂ H ₄	1000 ppm	≤3 ppm
Ethyldimethylamine	C4H ₁₁ N	50 ppm	45 ppm
Hydrogen	H ₂	1000 ppm	≤3 ppm
Hydrogen cyanide	HCN	25 ppm	≤3 ppm
Hydrogen sulfide	H ₂ S	20 ppm	≤50 ppm
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤4 ppm
Methane	CH ₄	10 Vol%	No effect
Methanol	CH ₃ OH	200 ppm	≤10 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤10 ppm (-)
Nitrogen monoxide	NO	20 ppm	≤10 ppm
Phosphine	PH ₃	5 ppm	≤8 ppm
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤10 ppm

DrägerSensor® XXS Cl₂

Order no. 68 10 890


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring dangerous substances, pulp and paper, power generation, sewage plants, water treatment.

Detection limit:	0.05 ppm	
Resolution:	0.05 ppm	
Measurement range/	0 to 20 ppm Cl ₂ (chlorine)	1.00
relative sensitivity	0 to 20 ppm F ₂ (fluorine)	1.00
	0 to 20 ppm Br ₂ (bromine)	1.00
	0 to 20 ppm ClO ₂ (chlorine dioxide)	0.60
Response time:	≤ 30 seconds (t ₉₀)	
Precision		
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.2 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 30 minutes	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 0.05 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.4% of measured value/% RH	
Test gas:	approx. 1 to 18 ppm Cl ₂	

This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. These sensors' advantages include excellent linearity and fast response times.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm Cl ₂
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 0.5
Hydrogen cyanide	HCN	60 ppm	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 0.6 ⁽⁻⁾
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	10 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	1 ppm	No effect
Phosphine	PH ₃	1 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 1 (-)

DrägerSensor® XXS CO DrägerSensor® XXS E CO

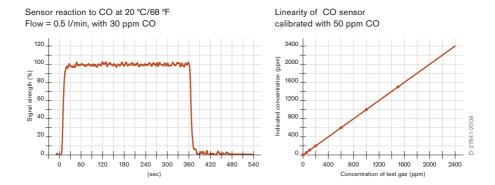
Order no. 68 10 882 68 12 212

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 2500	no	yes	3 years	> 5 years
Dräger X-am 5000	no	yes	3/5 years	> 5 years
Dräger X-am 5600	no	yes	3/5 years	> 5 years
Dräger X-am 8000	no	yes	3/5 years	> 5 years

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H2S, SO2) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

pm CO (carbon monoxide) s (t ₉₀) easured value
s (t ₉₀) easured value
s (t ₉₀) easured value
easured value
ear
ear
annum di valua /van
easured value/year
C (-40 to 122)°F
RH
0) hPa
measured value/K
f measured value/% RH
1800 ppm CO

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H₂S, SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS CO AND XXS E CO

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Acetylene	C ₂ H ₂	100 ppm	≤ 200
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C₂H₅OH	250 ppm	No effect
Ethene	C ₂ H ₄	100 ppm	≤ 300
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

DrägerSensor® XXS CO LC

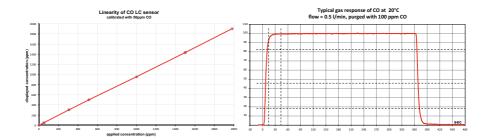
Order no. 68 13 210

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 6000/6500	no	yes	3 years	> 5 years
Dräger X-am 2500	no	yes	3 years	> 5 years
Dräger X-am 2800	no	yes	3 years	> 5 years
Dräger X-am 5000	no	yes	3 years	> 5 years
Dräger X-am 5600	no	yes	3 years	> 5 years
Dräger X-am 8000	no	yes	3 years	> 5 years
X-am 3500	no	yes	3 years	> 5 years

Selective filter - unexchangeable

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H2S, SO2) are eliminated.


The filter's service life can be calculated as follows: 10,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 10,000 ppm x hours/10 ppm = 1,000 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

Detection limit:	1 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)		
Response time:	≤ 15 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/year		
Sensitivity:	≤ ± 3% of measured value/year		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.02% of measured value/% RH		
Test gas:	approx. 20 to 1800 ppm CO		

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H_2S , SO_2 .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	as/vapor Chem. symbol Concentration		Display in ppm CO
Acetylene	C ₂ H ₂	100 ppm	≤ 200
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethene	C ₂ H ₄	100 ppm	≤ 300
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	≤ 200
Hydrogen chloride	HCI 40 ppm		No effect
Hydrogen cyanide	HCN 50 ppm		No effect
Hydrogen sulfide	H ₂ S	S 30 ppm	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	CH ₄ 5 Vol%	
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm No effect	

^{*} Concentrations significantly above 200 ppm H2S can lead to an influence (filter breakthrough) on the sensor in case of continuous exposure to H₂S.

DrägerSensor® XXS CO HC

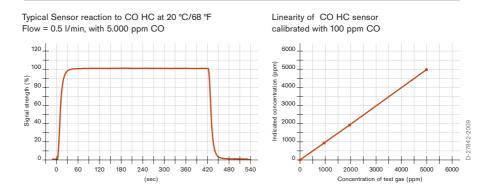
Order no. 68 12 010

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 3 years
Dräger X-am 5600	no	yes	1 year	> 3 years
Dräger X-am 8000	no	yes	1 year	> 3 years

Selective filter - unexchangeable

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H2S, SO2) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 5,000 ppm x hours/10 ppm = 500 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling (in particular monitoring high CO concentrations during rescue operations), shipping, inorganic chemicals, biogas, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	10 ppm	
Resolution:	5 ppm	
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)	
Response time:	≤ 25 seconds (t ₉₀)	
Precision		
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 5 ppm/year	
Sensitivity:	≤ ± 1% of measured value/month	
Warm-up time:	≤ 5 minutes	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	No effect	
Sensitivity:	≤ ± 0.3% of measured value/K	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.02% of measured value/% RH	
Test gas:	approx. 100 to 9,000 ppm CO	

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm CO	
Acetylene	C ₂ H ₂ 100 ppm		≤ 200	
Ammonia	NH ₃	100 ppm	No effect	
Carbon dioxide	CO ₂	30 Vol%	No effect	
Chlorine	Cl ₂	20 ppm	No effect	
Ethanol	C₂H₅OH	250 ppm	No effect	
Hydrogen	H ₂	0.1 Vol%	≤ 350	
Hydrogen chloride	HCI 40 ppm		No effect	
Hydrogen cyanide	HCN 50 ppm		No effect	
Hydrogen sulfide	H ₂ S 30 ppm		No effect	
Isobutylene	(CH ₃) ₂ CCH ₂			
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	30 ppm	≤ 5	
Methane	CH ₄ 5 Vol%		No effect	
Propane	C ₃ H ₈	C ₃ H ₈ 1 Vol%		
Sulfur dioxide	SO ₂	SO ₂ 25 ppm		

DrägerSensor® XXS CO H₂-CP

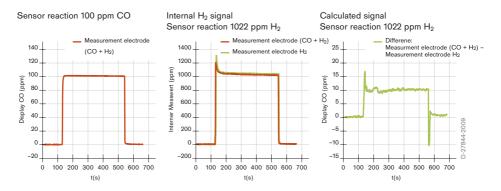
Order no. 68 11 950

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 8500	no	yes	1 year	> 3 years
Dräger X-am 5000	no	yes	1 year	> 3 years
Dräger X-am 5600	no	yes	1 year	> 3 years
Dräger X-am 8000	no	yes	1 year	> 3 years

Selective filter - unexchangeable

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H2S, SO2) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Steel industry, refineries, sewage treatment plants

Detection limit:	6 ppm		
Resolution:	2 ppm		
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)		
Response time:	≤ 25 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/year		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-20 to 50) °C (-4 to 122) °F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	_		
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity	_		
Zero point:	No effect		
Sensitivity:	≤ ± 0.02% of measured value/% RH		
Test gas:	approx. 20 to 1,800 ppm CO and 1,000 ppm H ₂		

Carbon monoxide and hydrogen can occur simultaneously in many areas of work such as in the steel industry, refineries, and sewage treatment plants. Hydrogen affects the CO signal in conventional sensors, which leads to many false alarms. The DrägerSensor® XXS CO H₂-CP uses two measuring electrodes – one of which measures CO and H₂, the other only H₂. The CO level is calculated and displayed on the basis of the difference between the two signals. A hydrogen concentration of 1,000 ppm (2.5% LEL) causes a maximum displayed concentration of only 15 ppm CO, which does not activate the CO alarm.

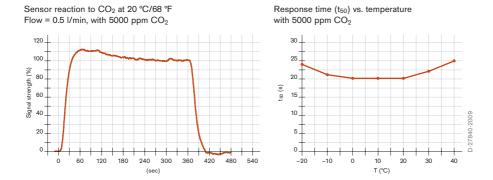
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Acetylene	C_2H_2	C_2H_2 100 ppm	
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	No effect
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	100 ppm	≤ 300
Hydrogen	H ₂	0.1 Vol%	≤ 15 (-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN 50 ppm		No effect
Hydrogen sulfide	H ₂ S 30 ppm		No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	NO 30 ppm	
Propane	C ₃ H ₈	1 Vol% No	
Sulfur dioxide	SO ₂	25 ppm No	

¹⁾ after compensation

DrägerSensor® XXS CO₂

Order no. 68 10 889


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 1.25 years	no
Dräger X-am 5000	no	yes	1 year	> 1.25 years	no
Dräger X-am 5600	no	yes	1 year	> 1.25 years	no
Dräger X-am 8000	no	yes	1 year	> 1.25 years	no

MARKET SEGMENTS

Waste disposal, Food and beverage (breweries), metal processing, petrochemical, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	0.3 Vol%	
Resolution:	0.1 Vol%	
Measurement range:	0 to 5 Vol% CO ₂ (carbon dioxide)	
Response time:	≤ 30 seconds (t ₅₀)	
Precision		
Sensitivity:	≤ ± 20% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.2 Vol%/year	
Sensitivity:	≤ ± 15% of measured value/month	
Warm-up time:	≤ 12 hours	
Ambient conditions		
Temperature:	(-20 to 40)°C (-4 to 104)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 0.01 Vol%/K	
Sensitivity:	≤ ± 2% of measured value/K	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	1 to 4 Vol% CO ₂	

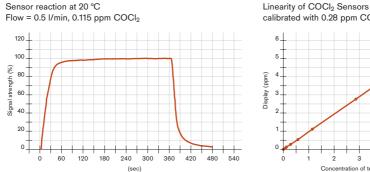
This sensor is highly sensitive (see cross-sensitivity list) and offers an economical alternative to infrared sensors if you need to warn against CO₂ concentrations in the ambient air.

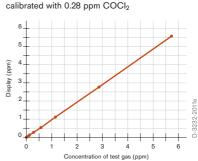
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO ₂
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	50 ppm	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	1.6 Vol%	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	60 ppm	No effect
Hydrogen sulfide	H ₂ S 20 ppm		No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Ozone	O ₃	O ₃ 1.5 ppm	
Phosphine	PH ₃	5 ppm	No effect
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XXS COCl₂

Order no. 68 12 005


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	0.5 years	> 1 year at below 25°C	no
Dräger X-am 5000	no	yes	0.5 years	> 6 months at 35°C	no
Dräger X-am 5600	no	yes	0.5 years		no
Dräger X-am 8000	no	yes	0.5 years		no


MARKET SEGMENTS

Manufacture of plastics, chemical industry, insecticides production, dyes, military

_		
0,01 ppm		
0,01 ppm		
0 bis 10 ppm COCl ₂ (Phosgene)		
≤ 20 seconds (t ₂₀)		
≤ ± 5% of measured value		
≤ ± 0,01 ppm/year		
≤ ± 1% of measured value/month		
≤ 1 hour		
-		
(-20 to 35) °C (-4 to 99) °F		
(10 to 90)% RH		
(700 to 1300) hPa		
no effect		
≤ ± 0.2% of measured value/K		
(+4 +8)°C (39 46) °F		
no effect		
≤ ± 0.05% of measured value/RH		
COCl ₂ test gas between 3.8 to 9 ppm (not in Dräger's portfolio)		
When installing the sensor with CC-Vision, the supplied code		
number adopted the factory adjustment. A first adjustment not		
necessary. An inaccuracy of up to ± 30% must be expected.		

This sensor's advantages include a very low detection limit, excellent linearity and high signal stability.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by ± 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of COCl2. To be sure, please check if gas mixtures are present.

Gas/vapor Chem. Symbol		Concentration	Reading in ppm COCl ₂	
Acetylene	C ₂ H ₂	20 ppm	No effect	
Ammonia	NH ₃	20 ppm	No effect	
Carbon dioxide	CO ₂	1,5 Vol%	No effect	
Carbon monoxide	CO	1000 ppm	No effect	
Chlorine	Cl ₂	0,5 ppm	≤ 0.2	
Ethanol	C ₂ H ₅ OH	260 ppm	No effect	
Hydrogen	H ₂	8000 ppm	No effect	
Hydrogen chloride	HCI	0,5 ppm	≤ 0.7	
Hydrogen fluoride	HF	0,4 ppm	≤ 0.1 ppm	
Hydrogen peroxide	H ₂ O ₂	1 ppm	No effect	
Hydrogen sulfide	H ₂ S	1 ppm	≤ 1 ¹⁾	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.1(-)	
Nitrogen monoxide	NO	30 ppm	No effect	
Ozone	O ₃	0,3 ppm	≤ 0.05(-)	
Phosphine	PH ₃	0,5 ppm	≤ 0.1 ppm	
Propanol	C ₃ H ₇ OH	500 ppm	No effect	
Sulfur dioxide	SO ₂	2 ppm	No effect	

⁽⁻⁾ Indicates negative deviation

¹⁾ Permanent exposure to H2S can result in a reduction of sensitivity.

DrägerSensor® XXS H₂

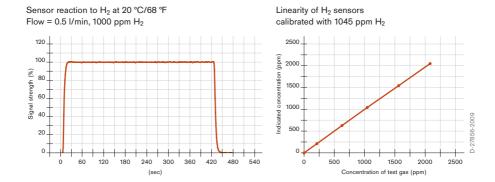
Order no. 68 12 370

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years
Dräger X-am 8000	no	yes	1 year	> 2 years

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours.

MARKET SEGMENTS

Leak detection, chemical, petrochemical, rocket fuel, production of plastics, steel production, industrial gases, fertilizer, battery charging stations, fuel cells.

Detection limit:	10 ppm
Resolution:	5 ppm
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)
Response time:	≤ 10 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 1% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 4 ppm/year
Sensitivity:	≤ ± 4% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 10 ppm
Sensitivity:	≤ ± 1 ppm/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.15% of measured value/% RH
Test gas:	approx. 20 to 2,000 ppm H ₂
·	

This sensor enables the detection of hydrogen concentrations in ppm. Its very fast response time makes it especially suitable for detecting leaks.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	s/vapor Chem. symbol		Display in ppm H ₂	
Acetylene	C ₂ H ₂	100 ppm	≤ 200	
Ammonia	NH ₃	100 ppm	No effect	
Carbon dioxide	CO ₂	30 Vol%	≤ 2	
Carbon monoxide	CO	100 ppm	≤ 200	
Chlorine	Cl ₂	20 ppm	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	30 ppm	No effect	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 51	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulfur dioxide	SO ₂	25 ppm	No effect	

DrägerSensor® XXS H₂ HC

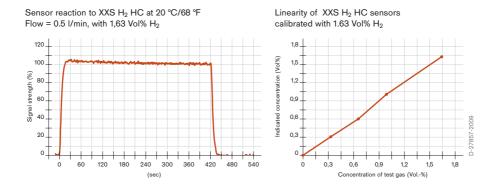
Order no. 68 12 025

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years
Dräger X-am 8000	no	yes	1 year	> 2 years

Selective filter

Internal selective filter.

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours.

MARKET SEGMENTS

Chemical industry, petrochemical industry, rocket fuel, leak detection, production of plastics, metal processing, industrial gases, fertilizer manufacturing, battery charging stations, fuel cells.

Detection limit:	0.02 Vol%
Resolution:	0.01 Vol%
Measurement range:	0 to 4 Vol% H ₂ (hydrogen)
Response time:	≤ 20 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.05 Vol%/year
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 0.05 Vol%
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.01% of measured value/% RH
Test gas:	approx. 0.2 to 3.99 Vol% H ₂

This sensor is suitable for measuring hydrogen across the entire LEL range. If a Dräger X-am 5600 is fitted with an IR-Ex sensor, then this sensor is the ideal addition for detecting any risk of explosion caused by hydrogen. Like all Dräger sensors, this one offers very fast response times and excellent linearity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	ias/vapor Chem. symbol		Display in Vol% H ₂	
Acetylene	C ₂ H ₂	100 ppm	≤ 0.02	
Ammonia	NH ₃	100 ppm	No effect	
Carbon monoxide	СО	1,000 ppm	≤ 0.1	
Carbon dioxide	CO ₂	30 Vol%	No effect	
Chlorine	Cl ₂	20 ppm	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	30 ppm	No effect	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 0.05	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulfur dioxide	SO ₂	25 ppm	No effect	

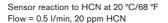
DrägerSensor® XXS HCN

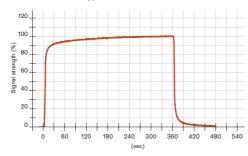
Order no. 68 10 887

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 8000	no	yes	1 year	> 1.5 years
Dräger X-am 5000	no	yes	1 year	> 1.5 years
Dräger X-am 5600	no	yes	1 year	> 1.5 years
Dräger X-am 8000	no	yes	1 year	> 1.5 years

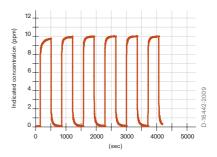
B2X (6812424) - optional and replaceable

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.


The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. Due to the change of sensitivity, a calibration is necessary after installation. The measurement value response time increases after the installation of the filter.


MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical warfare agent (blood agents).


Detection limit:	0.5 ppm	
Resolution:	0.1 ppm	
Measurement range	0 to 50 ppm HCN (hydrogen cyanide)	
Response time:	≤ 10 seconds (t ₅₀)	
Precision		
Sensitivity:	≤ ± 5% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 2 ppm/year	
Sensitivity:	≤ ± 5% of measured value/month	
Warm-up time:	≤ 35 minutes	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 1 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	approx. 1 to 45 ppm HCN	

This sensor's extremely quick response time and excellent repeatability provides a fast and reliable warning against Prussic acid (hydrogen cyanide).

Repeatability of HCN sensors with mit 10 ppm HCN

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCN To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN	
Acetylene	C ₂ H ₂	100 ppm	≤ 10	
Ammonia	NH ₃	50 ppm	No effect	
Carbon dioxide	CO ₂	10 Vol%	No effect	
Carbon monoxide	CO	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 20 ⁽⁻⁾	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Hydrogen	H ₂	1.5 Vol%	≤ 10	
Hydrogen chloride	HCI	20 ppm	≤1	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤1.5	
Methane	CH ₄	1 Vol%	No effect	
Nitrogen dioxide	NO ₂	10 ppm	≤ 20 ⁽⁻⁾	
Nitrogen monoxide	NO	20 ppm	No effect	
Ozone	O ₃	0.5 ppm	No effect	
Phosgene	COCl ₂	5 ppm	No effect	
Phosphine	PH ₃	1 ppm	≤ 8	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	

DrägerSensor® XXS HCN PC

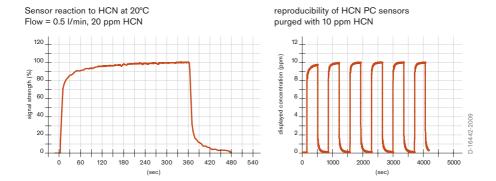
Order no. 68 13 165

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 1.5 years
Dräger X-am 5600	no	yes	1 year	> 1.5 years
Dräger X-am 8000	no	yes	1 year	> 1.5 years

B2X (6812424) - optional and replaceable

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.

The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. Due to the change of sensitivity, a calibration is necessary after installation. The measurement value response time increases after the installation of the filter.


MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical warfare agent (blood agents).

Detection limit:	3 ppm	
Resolution:	0.5 ppm	
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)	
Response time:	≤ 10 seconds (t ₅₀)	
Precision		
Sensitivity:	≤ ± 5% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 3 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 3 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	approx. 7 to 45 ppm HCN	

^{*}with limited temperature range: 0 to 40°C dry test gas

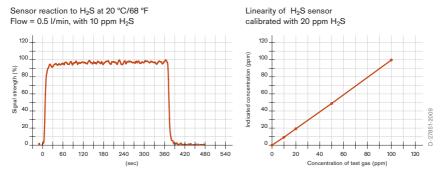
This sensor's extremely quick response time and excellent repeatability provides a fast and reliable warning against Prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCN To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN
Acetylene	C ₂ H ₂	100 ppm	≤ 10
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	1 ppm	2 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	0.5 Vol%	≤ 3
Hydrogen chloride	HCI	20 ppm	≤1
Hydrogen sulfide	H ₂ S	1 ppm	≤ 3
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	1 Vol%	No effect
Nitrogen dioxide	NO ₂	1 ppm	≤ 1 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	0.1 ppm	≤1
Sulfur dioxide	SO ₂	1 ppm	≤ 2

Order no. 68 10 883 68 12 213

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	3/5 years	> 5 years	no
Dräger X-am 5600	no	yes	3/5 years	> 5 years	no
Dräger X-am 8000	no	yes	3/5 years	> 5 years	no


MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	2 ppm
Resolution:	1 ppm
Measurement range:	0 to 200 ppm H ₂ S (hydrogen sulfide)
Response time:	≤ 15 seconds (t ₉₀)
Precision	
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/year
Sensitivity:	≤ ± 3% of measured value/year
Warm-up time:	≤ 5 minutes
Ambient conditions	
Temperature*:	(-40 to 50)°C (-40 to 122)°F
Humidity*:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	No effect
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	-
Zero point:	No effect
Sensitivity:	≤ ± 0.03% of measured value/% RH
Test gas:	approx. 5 to 180 ppm H₂S

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

This sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide has hardly any effect on hydrogen sulfide readings. This enables the selective measurement of the gas concentration using the DrägerSensor® XXS SO₂ (with integrated selective filter) together with the DrägerSensor® XXS H₂S in a device such as a Dräger X-am 5000 or X-am 5600

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

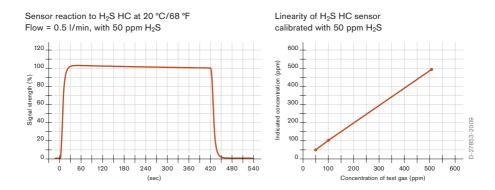
RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS H2S AND XXS E H2S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon disulfide	CS ₂	50 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 2 ⁽⁻⁾
Dimethyl disulfide	CH ₃ SSCH ₃	20 ppm	≤ 5
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	1000 ppm	≤ 10
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 12
Hydrogen	H ₂	2 Vol%	≤ 18
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Methyl mercaptan	CH ₃ SH	20 ppm	≤ 15
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5
Sulphur dioxide	SO ₂	20 ppm	≤ 2
tert-Butyl mercaptan	(CH₃)₃CSH	20 ppm	≤ 6
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3

DrägerSensor® XXS H₂S HC

Order no. 68 12 015

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no
Dräger X-am 8000	no	yes	1 year	> 3 years	no


MARKET SEGMENTS

Waste disposal industry, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, measuring hazardous material, biogas.

Detection limit:	4 ppm			
Resolution:	2 ppm			
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 15 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/year			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 5 minutes			
Ambient conditions				
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.03% of measured value/% RH			
Test gas:	approx. 40 to 900 ppm H₂S			

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

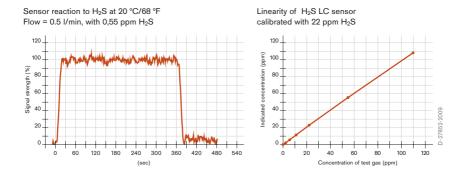
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2S . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetylene	C_2H_2	100 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon disulfide	CS ₂	50 ppm	No effect
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	1000 ppm	≤ 10
Hydrogen	H ₂	0.1 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm No effect	
Hydrogen phosphide	PH ₃	5 ppm	≤ 4
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol% No effect	
Sulfur dioxide	SO ₂	20 ppm ≤ 2	

DrägerSensor® XXS H₂S LC

Order no. 68 11 525

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 6000/	no	yes	3 years	> 5 years	no
6500					
Dräger X-am 2500	no	yes	3 years	> 5 years	no
Dräger X-am 2800	no	yes	3 years	> 5 years	no
Dräger X-am 5000	no	yes	3 years	> 5 years	no
Dräger X-am 5600	no	yes	3 years	> 5 years	no
Dräger X-am	no	yes	3 years	> 5 years	no
3500/8000					


MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	0.4 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 15 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 5% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.2 ppm/year			
Sensitivity:	≤ ± 5% of measured value/year			
Warm-up time:	≤ 5 minutes			
Ambient conditions				
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	approx. 5 to 90 ppm H ₂ S			

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

Combined with an excellent linearity and a fast response time, this sensor enables the selective measurement of hydrogen sulfide at below 1 ppm.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2S . To be sure, please check if gas mixtures are present.

Gas/vapor	s/vapor Chem. symbol Concentration		Display in ppm H ₂ S
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	СО	500 ppm	≤ 1
Carbon disulfide	CS ₂	50 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 1 ⁽⁻⁾
Dimethyl disulfide	CH₃SSCH₃	20 ppm	≤ 5
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	1000 ppm	≤ 10
Ethyl mercaptan	C₂H₅SH	20 ppm	≤ 13
Hydrogen	H ₂	0.1 Vol%	≤ 0.5
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤ 4 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5
Sulphur dioxide	SO ₂	20 ppm	≤ 1.5
tert- Butyl mercaptan	(CH₃)₃CSH	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3

DrägerSensor® XXS H₂S/CO

Order no. 68 11 410

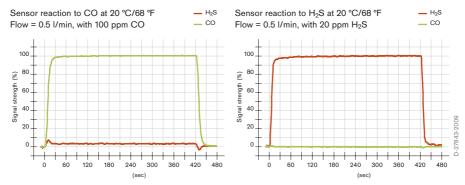
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years
Dräger X-am 8000	no	yes	2 years	> 3 years

Internal selective filter for CO - unexchangeable

Cross sensitivities to alcohol and acid gases (H₂S₁, SO₂) are eliminated.

The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS


Waste disposal, metal processing, biogas, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, paper industry, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	2 ppm (H ₂ S)/6 ppm (CO)			
Resolution:	1 ppm (H ₂ S)/2 ppm (CO)			
Measurement range:	0 to 200 ppm H ₂ S (hydrogen sulfide)			
	0 to 2,000 ppm CO (carbon monoxide)			
Response time:	≤ 20 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/year			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 5 minutes			
Ambient conditions				
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	\leq ± 2 ppm (H ₂ S) \leq ± 5 ppm (CO)			
Sensitivity:	\leq ± 5% of measured value (H2S) \leq ± 0.3% of measured value/K (CO)			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	approx. 5 to 90 ppm H ₂ S			
	approx. 20 to 450 ppm CO			

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

Carbon monoxide and hydrogen sulfide occur together in many areas of work. This sensor can monitor both gases simultaneously.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO or H_2S . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm H₂S	Display in ppm CO
Acetylene	C ₂ H ₂	100 ppm	No effect	≤ 200
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 vol. %	No effect	No effect
Carbon monoxide	CO	100 ppm	No effect	100
Chlorine	Cl ₂	20 ppm	≤ 2 (-) ¹)	No effect
Dimethyl disulfide	CH₃SSCH₃	20 ppm	≤ 11	No effectt
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 5	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 13	no effect
Hydrogen	H ₂	0.1 vol. %	No effect	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	20 ppm	20	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	No effect
Methane	CH ₄	5 vol. %	No effect	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16 ppm	≤ 16 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-) 1)	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	1 vol. %	No effect	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 7	No effect
Sulphur dioxide	SO ₂	25 ppm	≤ 2	No effect
tert- Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 8	No effect
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3	No effect

(-) 1) negative reading

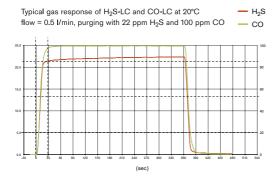
DrägerSensor® XXS H₂S LC/CO LC

Order no. 68 13 280

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 8500	no	yes	2 years	> 3 years
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years
Dräger X-am 8000	no	yes	2 years	> 3 years

Internal selective filter for CO - unexchangeable

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Waste disposal, metal processing, biogas, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, paper industry, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	0,4 ppm (H ₂ S)/1 ppm (CO)				
Resolution:	0.1 ppm (H ₂ S)/1 ppm (CO)				
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)				
	0 to 2,000 ppm CO (carbon monoxide)				
Response time:	≤ 20 seconds (t ₉₀)				
Precision					
Sensitivity:	H_2S : $\leq \pm 5$ % of measured value, CO : $\leq \pm 2$ % of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	H_2S : $\leq \pm 0,2$ ppm/year, CO : $\leq \pm 2$ ppm/year				
Sensitivity:	H_2S : $\leq \pm 5$ % of measured value/year, CO: $\leq \pm 3$ % of measured value/year				
Warm-up time:	H ₂ S: ≤ 5 minutes, CO: ≤ 15 minutes				
Ambient conditions					
Temperature*:	(-40 to 50)°C (-40 to 122)°F				
Humidity*:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	H _{2å} S: no effect, CO: ≤ ± 5 ppm				
Sensitivity:	H ₂ S: ≤ ± 5 % of measured value, CO: ≤ ± 0.3 % of measured value/K				
Influence of humidity					
Zero point:	No effect				
Sensitivity:	H ₂ S: ≤ ± 0.1 % of measured value/ %r.h., CO: ≤ ± 0.02 % of				
	measured value/ %r.h.				
Test gas:	approx. 5 to 90 ppm H ₂ S				
	approx. 20 to 1800 ppm CO				
	_				

Carbon monoxide and hydrogen sulfide occur together in many areas of work. This sensor can monitor both gases simultaneously. Because of the low detection limits, this sensor is suitable for the limitvalue monitoring.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO or H₂S. To be sure, please check if gas mixtures are present. H₂S.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H₂S	Display in ppm CO
Acetylene	C_2H_2	100 ppm	No effect	≤ 200
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect	No effect
Carbon disulfide	CS ₂	50 ppm	No effect	n.a.
Carbon monoxide	CO	500 ppm	≤ 1	500
Chlorine	Cl ₂	10 ppm	≤ 1 (-)	No effect
Dimethyl disulfide	CH₃SSCH₃	20 ppm	≤ 5	No effectt
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 5	No effect
Ethene	C ₂ H ₄	100 ppm	≤ 1	≤ 300
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 13	no effect
Hydrogen	H ₂	0.1 vol. %	No effect	≤ 200
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	30	No effect
Hydrogen sulfide	H ₂ S	30 ppm	30	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	No effect
Methane	CH ₄	5 Vol%	No effect	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 4 ⁽⁻⁾	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	1 Vol%	No effect	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5	No effect
Sulphur dioxide	SO ₂	20 ppm	≤ 1.5	No effect
tert- Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 4	No effect
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3	No effect

⁽⁻⁾ Indicates negative deviation

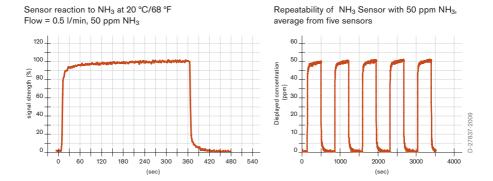
DrägerSensor® XXS NH₃

Order no. 68 10 888

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, hazmat, fumigation, metal processing, petrochemical, pulp and paper.


TECHNICAL SPECIFICATIONS

Detection limit:	4 ppm		
Resolution:	1 ppm		
Measurement range:	0-300 ppm NH ₃ (ammonia)		
Response time:	≤ 10 seconds (t ₅₀)		
Precision			
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 5 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature*:	(-40 to 50)°C (-40 to 122)°F		
Humidity*:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.1 ppm/% RH		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 10 to 75 ppm NH ₃		

The sensor is not suitable for monitoring a permanent NH3 concentration.

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

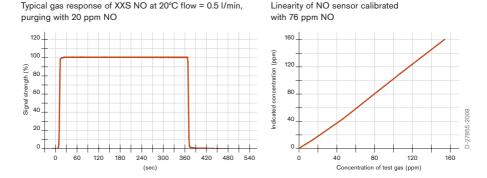
A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH $_3$. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetylene	C ₂ H ₂	100 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	СО	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 30 (-)
Diethanolamine	C ₄ H ₁₁ NO ₂	10 ppm	5 ppm
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 40
Ethyldimethylamine	C ₄ H ₁₁ N	50 ppm	30 ppm
Hydrogen	H ₂	1,000 ppm	≤ 4
Hydrogen chloride	HCI	20 ppm	≤ 15 ⁽⁻⁾
Hydrogen sulfide	H ₂ S	20 ppm	≤ 70
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 10 (-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 2
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XXS NO

Order no. 68 11 545


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 2800	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Power and district heating plants, chemical industry.

mark 11 11 11 11 11 11 11 11 11 11 11 11 11			
Detection limit:	0.3 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)		
Response time:	≤ 10 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.3 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 20 hours		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.02 ppm/K		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 3 to 175 ppm NO		

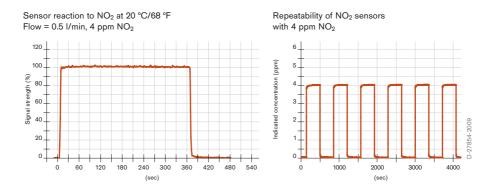
This sensor enables a selective measurement of NO. NO₂ concentrations < 20 ppm have not effects. It also offers a very fast response time and excellent linearity across its entire measurement range.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO
Acetone	CH₃COCH₃	1,000 ppm	No effect
Acetylene	C ₂ H ₂	0.8 Vol%	No effect
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol%	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	2,000 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	0.1 Vol%	No effect
Hydrogen	H ₂	1.5 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	5 ppm	1
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	2 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Phosphine	PH ₃	2 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulphur dioxide	SO ₂	10 ppm	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	0.6 Vol%	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm No effect	

DrägerSensor® XXS NO₂

Order no. 68 10 884


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 2500	no	yes	1 year	> 2 years	no
Dräger X-am 2800	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am	no	yes	1 year	> 2 years	no
3500/8000					

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemical, steel industry, shipping, rocket engineering, mining and tunneling.

Detection limit:	0.2 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)			
Response time:	≤ 15 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 1 ppm/year			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 15 minutes			
Ambient conditions				
Temperature:	(-30 to 50)°C (-22 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 1 ppm			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.2% of measured value/% RH			
Test gas:	approx. 1 to 45 ppm NO ₂			

This sensor's advantages include a fast response time and excellent repeatability. This sensor enables a selective measurement of NO_2 . NO concentrations < 20 ppm do not influence the measurement results, thus a selective NO_2 measurement is possible.

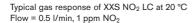
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

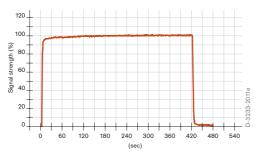
Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂
Acetylene	C ₂ H ₂	100 ppm	≤ 10 ⁽⁻⁾
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 10 ⁽⁻⁾
Hydrogen cyanide	HCN	60 ppm	≤ 10(-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100(-)
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤ 0.8(-)
Methane	CH ₄	1 Vol%	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	0.5
Phosphine	PH ₃	1 ppm	≤ 4(-)
Sulphur dioxide	SO ₂	20 ppm	≤ 20 ⁽⁻⁾

DrägerSensor® XXS NO₂ LC

Order no. 68 12 600

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no


MARKET SEGMENTS


Mining and tunnelling (emissions from diesel-engined vehicles), inorganic chemistry, metal processing, oil & gas, petrochemical industry, shipping, rocket technology

Detection limit:	0.04 ppm
Resolution:	0.02 ppm
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)
Response time:	≤ 15 seconds (t ₅₀)
Precision	
Sensitivity:	≤ ± 3% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.04 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 120 minutes
Ambient conditions	
Temperature:	(-30 to 50)°C (-22 to 122)°F
Humidity:*	(15 to 80)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	No effect
Sensitivity:	≤ ± 0.5% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	approx. 0.5 to 45 ppm NO ₂

^{*}A use or storage over a longer period below the specified relative humidity may cause a change of sensor sensitivity due to dehydration. This effect is reversible once the relative humidity increases. Please consider the storage conditions stated on the packaging or in the instruction for use.

Low cross sensitivities (e.g against SO_2 , H_2S , NO and CO), which allows a selective measurement of NO_2 . With a detection limit of 0.04 ppm and a quick response time this sensor is excellent to measure around the limit values.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂ LC	
Acetylene	C ₂ H ₂	100 ppm	No effect	
Ammonia	NH ₃	30 ppm	No effect	
Arsine	AsH ₃	0.5 ppm	No effect	
Carbon dioxide	CO ₂	5 Vol%	No effect	
Carbon monoxide	СО	2,000 ppm	No effect	
Chlorine	Cl ₂	1 ppm	≤ 1.5	
Chlorine dioxide	CIO ₂	1 ppm	≤ 1.5	
Ethane	C ₂ H ₆	0.1 Vol%	No effect	
Ethanol	C₂H₅OH	250 ppm	No effect	
Hydrazine	N ₂ H ₄	1 ppm	No effect	
Hydrogen	H ₂	0.1 Vol%	No effect	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0.03(-)	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	No effect	
Nitrogen monoxide	NO	30 ppm	No effect	
Ozone	O ₃	0,5 ppm	≤1	
Phosphine	PH ₃	0,5 ppm	No effect	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulfur dioxide	SO ₂	1 ppm	≤ 0.12 ⁽⁻⁾	
			•	

(-) Indicates negative deviation

DrägerSensor® XXS OV

Order no. 68 11 530

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry, pest control.

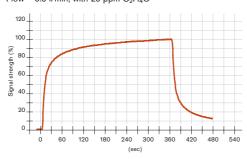
Detection limit:	0.5 ppm		
Resolution:	0.5 ppm		
Measurement range/ relative sensitivity		Resolution/ Detection- limit	Relative sensitivity to EO¹)
	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)	0.5	1.00
	0 to 200 ppm C ₃ H ₆ O (propylene oxide)	0.5	≈ 0.85
	0 to 100 ppm C ₂ H ₄ (ethene)	0.5	≈ 0.60
	0 to 100 ppm C ₃ H ₆ (propene)	2	≈ 0.65
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride)	0.5	≈ 0.60
	0 to 200 ppm CH ₃ OH (methanol)	0.5	≈ 0.50
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene)	1	≈ 1.40
	0 to 100 ppm HCHO (formaldehyde)	2	≈ 0.80
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol)	2	≈ 0.35
	0 to 200 ppm C ₄ H ₈ O (tetrahydrofuran)	1	≈ 0.80
	0 to 100 ppm C ₂ H ₃ OCH ₂ Cl	1	≈ 0.35
	(1-chloro-2,3 epoxypropane)		
	0 bis 100 ppm C ₆ H ₅ CHCH ₂ (styrene)	1	≈ 0.70
	0 bis 100 ppm H ₂ CC(CH ₃)COOCH ₃	1	≈ 0.40
	(methyl methacrylate)		
Response time:			
Precision	≤ 20 seconds (t ₅₀)		
Sensitivity:			
Long-term drift, at 20°C (68°F)	≤ ± 5% of measured value		
Zero point:			
Sensitivity:	≤ ± 5 ppm/year		
Warm-up time:	≤ ± 2% of measured value/month		
Ambient conditions	≤ 18 hours		
Temperature:			
Humidity:2)	(-20 to 50)°C (-4 to 122)°F		
Pressure:	(30 to 90)% RH		
Influence of temperature	(700 to 1,300) hPa		
Zero point:	± 2 ppm at (-20 to 40)°C (-4 to 104)°F		
Zero point:	± 0.5 ppm/K at (40 to 50)°C (104 to 122)°F		
Sensitivity:	≤ ± 1% of measured value/K		

TECHNICAL SPECIFICATIONS

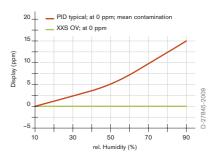
TECHNICAL OF ECH TOAT	10110
Influence of humidity	
Zero point:	No effect

Sensitivity:
Test gas:

approx. 3 to 12 ppm EO


≤ ± 0.5% of measured value/% RH

The DrägerSensor XXS OV has a defined cross-sensitivity to ethylene oxide (EO) and carbon monoxide (CO), see supplement 90 33 548. The sensor can be calibrated with EO or CO as an alternative for all target gases. Surrogate calibration can lead to an additional measurement error of up to 30 %³). Dräger recommends calibrating gas detection devices with the gas which has to detected during operation. This method of target gas calibration is more accurate than calibration with a surrogate gas. A surrogate calibration and functional test with CO in consideration of the extended measurement tolerance must be given preference. Dräger also recommends using a test gas concentration in the range of the alarm thresholds to be monitored.


SPECIAL CHARACTERISTICS

This sensor is especially suited for detecting leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID sensor, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors.

Sensor reaction to C₂H₄O at 20 °C/68 °F Flow = 0.5 l/min, with 20 ppm C₂H₄O

Influence of humidity on XXS OV sensors and PID sensors

¹⁾ Factors depend on serial numbers and are mentioned in the supplement to the sensor instructions for use (90 33 548).

²⁾ A use or storage over a longer period below the specified relative humidity may cause a change of sensor sensitivity due to dehydration. This effect is reversible once the relative humidity increases. Please consider the storage conditions stated on the packaging or in the instruction for use.

³⁾ Only valid for use and storage in > 30 % r.h.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by ± 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
Acetaldehyde	CH₃CHO	CH ₃ CHO 55 ppm	
Acetic acid	CH₃COOH	CH ₃ COOH 100 ppm	
Acetylene	C ₂ H ₂	100 ppm	≤ 150
Acrylonitrile	H₂CCHCN	80 ppm	≤ 5
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Butyraldehyd	C ₃ H ₇ CHO	50 ppm	≤ 17 ppm
Carbon dioxide	CO ₂	30 Vol%	No effect
Carbon monoxide	CO	100 ppm	≤ 44
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Diethyl ether	(C ₂ H ₅) ₂ O	100 ppm	≤ 60
Dimethylformamide	HCON(CH3 ₃) ₂	100 ppm	No effect
Ethane	C ₂ H ₆	0.2 Vol%	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 150
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Ethylene glycol	C ₂ H ₆ O ₂	50 ppm	≤ 35
Hydrogen	H ₂	1,000 ppm	≤ 5
Hydrogen chloride	HCI	20 ppm	≤ 5
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40
Isobutylene	(CH ₃) ₂ CCH ₂	50 ppm	≤ 45
Nitrogen dioxide	NO ₂	20 ppm	≤ 2
Nitrogen monoxide	NO	20 ppm	≤ 20
Methane	CH ₄	2 Vol%	No effect
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Phosgene	COCl ₂	50 ppm	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 10
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Vinyl acetate	CH ₃ COOC ₂ H ₃	30 ppm	≤ 30
Xylene	C ₆ H ₄ (CH ₃) ₂	0.2 Vol%	No effect

DrägerSensor® XXS OV

DrägerSensor® XXS OV-A

Order no. 68 11 535

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

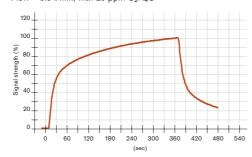
MARKET SEGMENTS

Production of plastics, disinfection, paintshops, chemical industry.

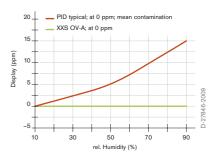
Detection limit:	1 ppm				
Resolution:	1 ppm				
Measurement range/ relative sensitivity		Resolution/ Detection- limit	Relative sensitivity to EO ¹⁾		
	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)	1	1.00		
	0 to 100 ppm H ₂ CCHCN (acrylonitrile)	1	≈ 0.15		
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	2	≈ 0.90		
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)	1	≈ 0.85		
	0 to 300 ppm C ₂ H ₅ OH (ethanol)	2	≈ 0.55		
	0 to 200 ppm CH ₃ CHO (acetaldehyde)	1	≈ 0.35		
	0 to 200 ppm (C ₂ H ₅) ₂ O (diethyl ether)	1	≈ 0.75		
	0 to 100 ppm C ₂ H ₂ (acetylene)	1	≈ 1.40		
Response time:	≤ 40 seconds (t ₅₀)				
Precision					
Sensitivity:	≤ ± 20% of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤ ± 5 ppm/year				
Sensitivity:	≤ ± 3% of measured value/month				
Warm-up time:	≤ 18 hours				
Ambient conditions					
Temperature:	(-20 to 50)°C (-4 to 122)°F				
Humidity:2)	(30 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature					
Zero point:	(-20 to 40)°C (-4 to 104)°F = ± 2 ppm				
Zero point:	(40 to 60)°C (104 to 140)°F = ± 0.5 ppm/K				
Sensitivity:	≤ ± 1% of measured value/K				
Influence of humidity					
Zero point:	No effect				
Sensitivity:	≤ ± 0.5% of measured value/% RH				

TECHNICAL SPECIFICATIONS

Test gas:


approx. 3 to 12 ppm EO

The DrägerSensor XXS OV-A has a defined cross-sensitivity to ethylene oxide (EO) and carbon monoxide (CO), see supplement 90 33 549. The sensor can be calibrated with EO or CO as an alternative for all target gases. Surrogate calibration can lead to an additional measurement error of up to 30 %³). Dräger recommends calibrating gas detection devices with the gas which has to detected during operation. This method of target gas calibration is more accurate than calibration with a surrogate gas. A surrogate calibration and functional test with CO in consideration of the extended measurement tolerance must be given preference. Dräger also recommends using a test gas concentration in the range of the alarm thresholds to be monitored.


SPECIAL CHARACTERISTICS

The DrägerSensor® XXS OV-A has the same excellent characteristics as the DrägerSensor® XXS OV, but it has also been optimized for other organic gases and vapors. Just like the DrägerSensor® XXS OV, the DrägerSensor® XXS OV-A can be calibrated with EO as a replacement, this may produce an additional measuring error of 30%. For more accurate measurements, we recommend calibrating using the target gas — i.e. the gas that you intend to detect in actual operation.

Sensor reaction to C_2H_4O at 20 °C/68 °F Flow = 0.5 I/min, with 20 ppm C_2H_4O

Influence of humidity on XXS OV-A sensors and PID sensors

¹⁾ Factors depend on serial numbers and are mentioned in the supplement to the sensor instructions for use (90 33 549).

²⁾ A use or storage over a longer period below the specified relative humidity may cause a change of sensor sensitivity due to dehydration. This effect is reversible once the relative humidity increases. Please consider the storage conditions stated on the packaging or in the instruction for use.

³⁾ Only valid for use and storage in > 30 % r.h.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
1-chloro-2, 3 epoxypropane	C ₂ H ₃ OCH ₂ Cl	C ₂ H ₃ OCH ₂ Cl 25 ppm	
Acetic acid	CH₃COOH	100 ppm	No effect
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Butadiene	CH ₂ CHCHCH ₂	50 ppm	≤ 75
Carbon dioxide	CO ₂	30 Vol%	No effect
Carbon monoxide	CO	100 ppm	≤ 45
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethene	C ₂ H ₄	50 ppm	≤ 45
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Formaldehyde	НСОН	40 ppm	≤ 25
Hydrogen	H ₂	1,000 ppm	≤ 5
Hydrogen chloride	HCI	20 ppm	≤ 3
Hydrogen cyanide	HCN	20 ppm	≤ 8
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤75
Isopropanol	(H ₃ C) ₂ CHOH	250 ppm	≤ 110
Methane	CH ₄	2 Vol%	No effect
Methanol	CH ₃ OH	100 ppm	≤ 160
Methyl methacrylate	H ₂ CC(CH ₃)COOCH ₃	60 ppm	≤ 25
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO_2	20 ppm	≤ 1
Nitrogen monoxide	NO	20 ppm	≤ 15
Phosgene	COCl ₂	50 ppm	No effect
Propene	C ₃ H ₆	50 ppm	≤ 35
Propylene oxide	C ₃ H ₆ O	50 ppm	≤ 45
Sulfur dioxide	SO ₂	20 ppm	≤ 9
Styrene	C ₆ H ₅ CHCH ₂	35 ppm	≤ 35
Tetrahydrofuran	C ₄ H ₈ O	60 ppm	≤ 55
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Vinyl chloride	C ₂ H ₃ Cl	50 ppm	≤ 40

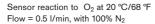
ST-1713-2005

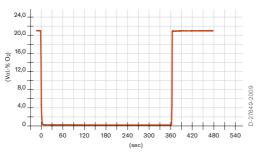
DrägerSensor® XXS OV-A

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 6000/	no	yes	3 years	> 5 years	no
6500					
Dräger X-am 2500	no	yes	3 years	> 5 years	no
Dräger X-am 2800*	no	yes	3 years	> 5 years	no
Dräger X-am 5000	no	yes	3/5 years	> 5 years	no
Dräger X-am 5600	no	yes	3/5 years	> 5 years	no
Dräger X-am 8000	no	yes	3/5 years	> 5 years	no

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.


TECHNICAL SPECIFICATIONS


TECHNICAL OF ECH TOWN			
Detection limit:	0.1 Vol%		
Resolution:	0.1 Vol%		
Measurement range:	0 to 25 Vol% O ₂ (oxygen)		
Response time:	≤ 10 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.5 Vol%/year		
Sensitivity:	≤ ± 1% of measured value/year		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.2 Vol%		
Sensitivity:	≤ ± 2% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 12 to 20 Vol% O ₂ in N ₂		

The sensor cannot be used to measure oxygen in the presence of helium. For oxygen monitoring during inerting processes, see DrägerSensor XXS O2 100 (SN 68 12 385).

 $^{^{\}star}$ Dräger X-am 2800 does not support the DrägerSensor XXS E O2 (6812211).

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 AND XXS E O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂
Acetylene	C ₂ H ₂	1 Vol%	≤ 0.5 ⁽⁻⁾
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4 ⁽⁻⁾
Carbon monoxide	СО	0.5 Vol%	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethane	C ₂ H ₆	1.0 Vol%	≤ 0.2 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾
Helium	He	20 Vol%	≤ 3*
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	10 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	2 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	No effect

⁽⁻⁾ Indicates negative deviation

^{*} non-linear false positive display value

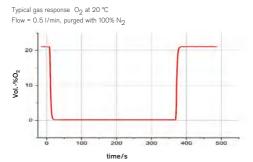
DrägerSensor® XXS O₂ PR

Order no. 68 00 530

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 2500/ 5000	no	yes	2 years	> 5 years	no
Dräger X-am 5000	no	yes	2 years	> 5 years	no
Dräger X-am 5600	no	yes	2 years	> 5 years	no
Dräger X-am 8000	no	yes	2 years	> 5 years	no

Internal selective filter for CO - unexchangeable

Sewage, mining and tunneling, fumigation, biogas, hazmat and fire services, industrial gases


MARKET SEGMENTS

Gas suppliers, waste management, petrochemical industry, sewage, mining and tunneling, shipping, inorganic chemistry, steel industry, organic chemistry, oil & gas

Detection limit:	0.1 Vol%			
Resolution:	0.1 Vol%			
Measurement range:	0 to 30 Vol% O ₂ (oxygen)			
Response time:	≤ 13 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 1 % of measured value for 0 to 25 Vol%			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.5 Vol%/year			
Sensitivity:	≤ ± 1 % of measured value/year			
Warm-up time:	≤ 15 minutes			
Ambient conditions				
Temperature:	(-40 to 50) °C (-40 to 122) °F			
Humidity:	(10 to 90) % r. h.			
Pressure:	700 to 1300 hPa			
Influence of temperature				
Zero point:	≤ ± 0.2 Vol%			
Sensitivity:	≤ ± 2 % of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1 % of measured value/% r. h.			
Test gas:	approx. 12 to 20 Vol% O2			

BESONDERE EIGENSCHAFTEN

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EG (RoHS). Due to the internal filter, this sensor is less sensitive to influences caused by outgassing of plastics. The extremely fast response time of less than 13 seconds provides a reliable warning of oxygen deficiency or excess.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 AND XXS E O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂
Acetylene	C_2H_2	1.0 Vol%	≤ 0,5(-)
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4(-)
Carbon monoxide	CO	0.5 Vol%	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethane	C ₂ H ₆	1.0 Vol%	≤ 2(-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	2.0 Vol%	≤ 2(-)
Helium	He	20 Vol%	≤ 3*
Hydrogen	H ₂	1.6 Vol%	≤ 2.5(-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Isobutylene	i-C ₄ H ₈	100 ppm	No effect
Methane	CH ₄	10 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	2 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	No effect

⁽⁻⁾ Indicates negative deviation

^{*} non-linear false positive display value

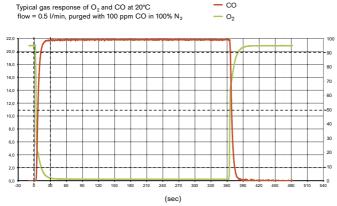
DrägerSensor® XXS O₂/CO LC

Order no. 68 13 275

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 8500	no	yes	2 years	> 3 years
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years
Dräger X-am 8000	no	yes	2 years	> 3 years

Internal selective filter for CO - unexchangeable

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Gas suppliers, waste management, petrochemical industry, sewage, mining and tunneling, shipping, inorganic chemistry, steel industry, organic chemistry, oil & gas

Detection limit:	0.1 Vol% O ₂ , 1 ppm CO					
Resolution:	0.1 Vol% O ₂ , 1 ppm CO					
Measurement range:	0 to 25 Vol% O ₂ (oxygen), 0 to 2000 ppm CO					
Response time:	≤ 15 seconds (t ₉₀)					
Precision						
Sensitivity:	O_2 : $\leq \pm 1$ % of measured value, CO : $\leq \pm 2$ % of measured value					
Long-term drift, at 20°C (68°F)						
Zero point:	O_2 : $\leq \pm 0.5$ Vol% /year, CO: $\leq \pm 2$ ppm/year					
Sensitivity:	O ₂ : ≤ ± 1 % of measured value/year, CO: ≤ ± 3 % of measured value/					
	year					
Warm-up time:	O ₂ : ≤ 15 minutes, CO: ≤ 15 minutes					
Ambient conditions						
Temperature:	(-40 to 50)°C (-40 to 122)°F					
Humidity:	(10 to 90)% RH					
Pressure:	(700 to 1,300) hPa					
Influence of temperature						
Zero point:	O_2 : $\leq \pm 0.2 \text{ Vol}\%$					
	CO: ≤ ± 5 ppm					
Sensitivity:	O_2 : $\leq \pm 2$ % of measured value					
	CO: ≤ ± 0.3 % of measured value/K					
Influence of humidity	<u> </u>					
Zero point:	No effect					
Sensitivity:	O_2 : $\leq \pm 0.1$ % of measured value/%r.h.					
	CO: ≤ ± 0.02 % of measured value/%r.h.					
Test gas:	approx. 12 to 20 Vol% O ₂					
	20 to 1800 ppm CO					

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen. The prominent feature of this sensor is the simultaneous measurement of % by vol. oxygen and ppm carbon monoxide in **one** sensor.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 /CO LC

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂	Display in ppm CO with selective filter
Acetylene	C_2H_2	1 Vol%	≤ 0.5 ⁽⁻⁾	≤ 200
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4 ⁽⁻⁾	≤ 2
Carbon monoxide	CO	0.2 Vol%	No effect	2000
Chlorine	Cl ₂	20 ppm	No effect	No effect
Ethane	C ₂ H ₆	1 Vol%	≤ 0.2 ⁽⁻⁾	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾	≤ 250
Helium	He	20 Vol%	≤ 3*	n.a.
Hydrogen	H ₂	0.5	≤ 0.8(-)	≤ 1000
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect	No effect
Isobutylene	i-C ₄ H ₈	100 ppm	No effect	No effect
Methane	CH ₄	10 Vol%	No effect	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	2 Vol%	No effect	No effect
Sufur dioxide	SO ₂	20 ppm	No effect	No effect

⁽⁻⁾ Indicates negative deviation

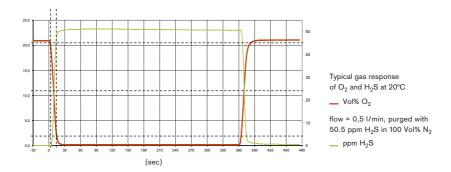
^{*} non-linear false positive dispaly value

DrägerSensor® XXS O₂/H₂S LC

Order no. 68 14 137

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8500	no	yes	2 year	> 3 years	no
Dräger X-am 5000	no	yes	2 years	> 3 years	no
Dräger X-am 5600	no	yes	2 years	> 3 years	no
Dräger X-am 8000	no	yes	2 years	> 3 years	no

MARKET SEGMENTS


Gas suppliers, waste disposal, petrochemical industry, sewage, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and as

TECHNICAL SPECIFICATIONS

Detection limit:	0.1 Vol% O ₂ , 0.4 ppm H ₂ S			
Resolution:	0.1 Vol% O ₂ , 0.1 ppm H ₂ S			
Measurement range:	0 to 25 Vol% O ₂ (oxygen), 0 to 100 ppm H ₂ S (hydrogen sulfide)			
Response time:	O2: \leq 15 seconds, H ₂ S: \leq 20 seconds (t ₉₀)			
Precision				
Sensitivity:	O_2 : $\leq \pm 1$ % of measured value, H_2S : $\leq \pm 5$ % of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	O_2 : $\leq \pm 0.5 \text{ Vol}\%$ /year, H_2S : $\leq \pm 0.2 \text{ ppm/year}$			
Sensitivity:	O_2 : $\leq \pm 1$ % of measured value/year, H_2S : $\leq \pm 5$ % of measured value/			
	year			
Warm-up time:	O ₂ : ≤ 15 minutes, H ₂ S: ≤ 10 minutes			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	O_2 : $\leq \pm 0.2 \text{ Vol}\%$			
	H ₂ S: No effect			
Sensitivity:	O_2 : $\leq \pm 2$ % of measured value			
	H ₂ S: ≤± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	O_2 : $\leq \pm 0.1$ % of measured value/%r.h.			
	H_2S : $\leq \pm 0.1 \%$ of measured value/ %r.h.			
Test gas:	approx. 12 to 20 Vol% O ₂			
	approx. 5 to 90 ppm H ₂ S			

SPECIAL CHARACTERISTICS

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). The prominent feature of this sensor is the simultaneous measurement of % by vol. oxygen and ppm hydrogen sulfide in one sensor.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 /H2S LC

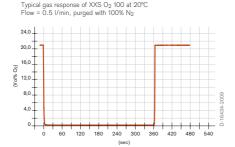
Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂	Display in ppm H₂S	
Acetylene	C ₂ H ₂	0,5 Vol%	≤ 0,3 ⁽⁻⁾	≤ 10	
Ammonia	NH ₃	100 ppm	No effect	No effect	
Carbon dioxide	CO ₂	10 Vol%	≤ 0,4 ⁽⁻⁾	No effect	
Gas	chem.symbol	Conc.	display O2	display H2S	
Carbon disulfide	CS ₂	50 ppm	n.a.	No effect	
Carbon monoxide	CO	500 ppm	No effect	≤ 2	
Chlorine	Cl ₂	10 ppm	No effect	≤ 2 ⁽⁻⁾	
Dimethyl disulfide	CH ₃ SSCH ₃	20 ppm	No effect	≤ 11	
Dimethyl sulfide	(CH ₃) ₂ S	20 ppm	No effect	≤ 5	
Ethane	C ₂ H ₆	1,0 Vol%	≤ 0,2 ⁽⁻⁾	No effect	
Ethanol	C₂H₅OH	250 ppm	No effect	No effect	
Ethene	C ₂ H ₄	1000 ppm	No effect	≤ 10	
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	No effect	≤ 13	
Helium	He	20 Vol%	≤ 3*	n.a.	
Hydrogen	H ₂	1,5 Vol%	≤ 2,5 ⁽⁻⁾	≤ 5	
Hydrogen chloride	HCI	40 ppm	No effect	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	No effect	
Hydrogen sulfide	H ₂ S	100 ppm	No effect	100	
Isobutylene	i-C ₄ H ₈	100 ppm	No effect	No effect	
Methane	CH ₄	5 Vol%	No effect	No effect	
Methyl mercaptan	CH₃SH	20 ppm	No effect	≤ 16	
Nitrogen dioxide	NO ₂	20 ppm	No effect	≤ 4 ⁽⁻⁾	
Nitrogen monoxide	NO	30 ppm	No effect	No effect	
Propane	C ₃ H ₈	1 Vol%	No effect	No effect	
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	No effect	≤ 7	
Sulfur dioxide	SO ₂	20 ppm	No effect	≤ 3	
tert-Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	No effect	≤ 9	
Tetrahydrothiophene	C ₄ H ₈ S	50 ppm	No effect	≤ 5	

⁽⁻⁾ Indicates negative deviation

^{*} non-linear false positive dispaly value

DrägerSensor® XXS O₂ 100

Order no. 68 12 385


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no
Dräger X-am 8000	no	yes	1 year	> 3 years	no

MARKET SEGMENTS

Gas suppliers, oxygen cylinders (diving), submarines, nuclear power plants

Detection limit:	0.5 Vol%			
Resolution:	0.5 Vol%			
Measurement range:	0 to 100 Vol% O ₂ (oxygen)			
Response time:	≤ 5 seconds (t ₉₀)			
Precision				
Sensitivity:	≤ ± 1% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.5 Vol%/year			
Sensitivity:	≤ ± 3% of measured value/year			
Warm-up time:	≤ 15 minutes			
Ambient conditions				
Temperature:	(0 to 45)°C (32 to 113)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,100) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.01% of measured value/% RH			
Test gas:	approx. 10 to 100 Vol% O ₂ in N ₂			

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). The sensor's measurement principle is based on the partial pressure measurement of oxygen. Therefore, this sensor is suitable for the oxygen monitoring during inertisation processes. The inert gas can be nitrogen, carbon dioxide, argon or helium.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 100

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂
Carbon dioxide	CO ₂	5 vol%	No effect
Chlorine	Cl ₂	20 ppm	No effect
Helium	He	50 vol%	≤ 1 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	10 vol%	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	0.05 vol%	≤ 1 ⁽⁻⁾
Propane	C ₃ H ₈	2 vol%	No effect
Sulphur dioxide	SO ₂	50 ppm	No effect

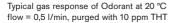
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years
Dräger X-am 8000	no	yes	1 year	> 2 years

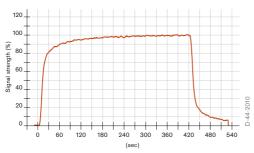
B2X (68 12 424) - as standard and exchangeable

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.

The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. Due to the change of sensitivity, a calibration is necessary after installation. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS


Gas supply companies


TECHNICAL SPECIFICATIO	7N3 					
Detection limit:	1 ppm					
Resolution:	0.5 ppm	1.00				
Measurement range/	0 - 40 ppm THT (tetrahydrothiophene)	2.50				
relative sentitivity	0 - 40 ppm (CH ₃) ₃ CSH (tertbutyl mercaptane)	2.00				
	0 - 40 ppm C ₂ H ₅ CH(CH ₃)SH (secbutyl mercaptane)	4.00				
	0 - 40 ppm CH ₃ SH (methyl mercaptane)	3.00				
	0 - 40 ppm C ₂ H ₅ SH (ethyl mercaptane)	1.80				
	0 - 100 ppm (CH ₃) ₂ S (dimethyl sulfide)	4.00				
	0 - 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)					
Response time:	≤ 90 seconds (t ₉₀)					
Precision						
Sensitivity:	≤ ± 3 % measured value/month					
Long-term drift, at 20°C (68°F)						
Zero point:	≤ ± 2 ppm/year					
Sensitivity:	≤ ± 2% measured value/month					
Warm-up time:	≤ 12 hours					
Ambient conditions						
Temperature*:	(-20 to 50)°C (-4 to 122) °F for THT, TBM, SBM					
	(5 to 40)°C (32 to 104) °F for MeM, EtM, DMS, DMDS					
Humidity*:	(10 to 90) % RH					
Pressure:	(700 to 1300) hPa					
Influence of temperature						
Zero point:	≤ ± 2 ppm					
Sensitivity:	≤ ± 10 % of measured value					
Influence of humidity						
Zero point:	≤ ± 0,1 ppm / % RH					
Sensitivity:	≤ ± 0,2 % of measured value/ RH					
Test gas:	THT test gas of approx. 2 to 18 ppm or an other of the target gases					
	(CH ₃) ₃ CSH, C ₂ H ₅ CH(CH ₃)SH, CH ₃ SH, C ₂ H ₅ SH, (CH ₃) ₂ S, CH ₃ SSCH					

^{*}Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated. In addition to a quick response time this Odorant sensor are highly selective. An internal, replaceable selective filter filters out most associated gases in natural gases like H₂S and SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH $_3$. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

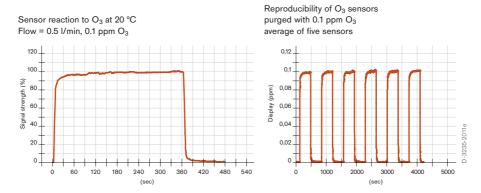
Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol%	No effect	No effect
Carbon monoxide	CO	125 ppm	No effect	No effect
Chlorine	Cl ₂	8 ppm	≤3 ppm ⁽⁻⁾	No effect
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1000 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤30 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤3.5 ppm	≤3.5 ppm
Methane	CH ₄	100 Vol%	No effect	No effect
Methanol	CH₃OH	200 ppm	≤5 ppm	≤5 ppm
Nitrogen dioxide	NO_2	10 ppm	No effect	No effect
Nitrogen monoxide	NO	20 ppm	≤30 ppm	≤30 ppm
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤4 ppm	≤4 ppm
Phosphine	PH ₃	5 ppm	≤15 ppm	≤15 ppm
Sulfur dioxide	SO ₂	20 ppm	≤15 ppm	No effect

(-) Indicates negative deviation

DrägerSensor® XXS Ozone

Order no. 68 11 540

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no


MARKET SEGMENTS

Ozone generator manufacturer, coal-fired power plants, water treatment (drinking and industrial water), food and beverage industry, swimming pools, pulp and paper industry, pharmaceutical and cosmetics industry

	· -	
Detection limit:	0,02 ppm	
Resolution:	0,01 ppm	
Measurement range:	0 to 10 ppm O ₃ (ozone)	
Response time:	≤ 10 seconds (t ₅₀)	
Precision		
Sensitivity:	≤ ± 3 % of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.02 ppm/year	
Sensitivity:	≤ ± 2 % of measured value/month	
Warm-up time:	≤ 120 minutes	
Ambient conditions	<u> </u>	
Temperature:	(-20 to 50) °C (-4 to 122) °F	
Humidity:*	(10 to 90) % RH	
Pressure:	(700 to 1300) hPa	
Influence of temperature		
Zero point:	No effect	
Sensitivity:	≤ ± 0.5 % of measured value/K	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1 % of measured value/% RH	
Test gas:	approx. 0.5 to 9 ppm O ₃	
	5 ppm NO ₂	
	The calibration and function test can be conducted both with the	
	target gas O ₃ , as well as with the replacement test gas NO ₂ .	
	Surrogate calibration with NO ₂ can lead to an additional measuring	
	error of up to ± 30 %. When conducting a function test with 5 ppm	
	NO ₂ an indication of 3.5 ±1 ppm O ₃ is expected.	

^{*}A use or storage over a longer period below the specified relative humidity may cause a change of sensor sensitivity due to dehydration. This effect is reversible once the relative humidity increases. Please consider the storage conditions stated on the packaging or in the instruction for use.

A fast response time and excellent repeatability are just two examples of this sensor's special characteristics. With a detection limit of 0.02 ppm and a resolution of 0.01 ppm, it is also optimally suited for limit value monitoring.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of Ozone. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm Ozone
Acetylene	C ₂ H ₂	100 ppm	no effect
Ammonia	NH ₃	30 ppm	no effect
Arsine	AsH ₃	0,5 ppm	no effect
Carbon dioxide	CO ₂	5 Vol%	no effect
Carbon monoxide	CO	2000 ppm	no effect
Chlorine	Cl ₂	1 ppm	≤ 0.8
Chlorine dioxide	CIO ₂	1 ppm	≤ 0.8
Ethane	C ₃ H ₆	0,1 Vol%	no effect
Ethanol	C ₂ H ₅ OH	250 ppm	no effect
Hydrazine	N ₂ H ₄	1 ppm	no effect
Hydrogen	H ₂	0,1 Vol%	no effect
Hydrogen chloride	HCI	40 ppm	no effect
Hydrogen cyanide	HCN	50 ppm	no effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0.02 ⁽⁻⁾
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤ 0.04
Methane	CH ₄	5 Vol%	no effect
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.71
Nitrogen monoxide	NO	30 ppm	no effect
Phosphine	PH ₃	0,5 ppm	no effect
Propane	C ₃ H ₈	1 Vol%	no effect
Sulfur dioxide	SO ₂	1 ppm	≤ 0.06 ⁽⁻⁾

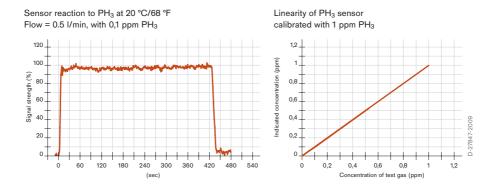
⁽⁻⁾ Indicates negative deviation

DrägerSensor® XXS PH₃

Order no. 68 10 886

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 8000 ¹⁾	no	yes	1 year	> 3 years	no
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no
Dräger X-am 8000	no	yes	1 year	> 3 years	no

¹⁾ Selection of measuring gas in Pac 7000/8000 not possible, only phosphine


MARKET SEGMENTS

Inorganic chemicals, fumigation, clearance measurements.

0.02 ppm		
0.02 pp		
0.01 ppm		
0 to 20 ppm PH ₃ (phosphine) 1.0		
0 to 20 ppm AsH ₃ (arsine)	1.00	
0 to 20 ppm B ₂ H ₆ (diborane)	0.25	
0 bis 20 ppm GeH ₄ (Germanium hydride)	0.40	
0 to 20 ppm SiH ₄ (silane)	0.50	
0 to 20 ppm H ₂ Se (selenium hydrogen)*	0.50	
≤ 10 seconds (t ₉₀)		
≤ ± 2% of measured value		
≤ ± 0.05 ppm/year		
≤ ± 2% of measured value/month		
≤ 15 minutes		
PH ₃ , AsH ₃ , SiH ₄ : (-20 to 50)°C (-4 to 122)°F		
B ₂ H ₆ : (0 to 50)°C (32 to 122)°F		
GeH ₄ : (15 - 35)°C (59 - 95)°F		
(10 to 90)% RH		
(700 to 1,300) hPa		
≤ ± 0.02 ppm		
≤ ± 5% of measured value		
No effect		
≤ ± 0.05% of measured value/% RH		
approx. 0.5 to 18 ppm PH ₃		
	0.01 ppm 0 to 20 ppm PH ₃ (phosphine) 0 to 20 ppm AsH ₃ (arsine) 0 to 20 ppm B ₂ H ₆ (diborane) 0 bis 20 ppm GeH ₄ (Germanium hydride) 0 to 20 ppm SiH ₄ (silane) 0 to 20 ppm H ₂ Se (selenium hydrogen)* ≤ 10 seconds (t ₉₀) ≤ ± 2% of measured value ≤ ± 0.05 ppm/year ≤ ± 2% of measured value/month ≤ 15 minutes PH ₃ , AsH ₃ , SiH ₄ : (-20 to 50)°C (-4 to 122)°F B ₂ H ₆ : (0 to 50)°C (32 to 122)°F GeH ₄ : (15 - 35)°C (59 - 95)°F (10 to 90)% RH (700 to 1,300) hPa ≤ ± 0.02 ppm ≤ ± 5% of measured value/% RH No effect ≤ ± 0.05% of measured value/% RH	

^{*}With limited temperature range: 0 to 40°C dry test gas

This sensor's advantages include an extreme fast response time of less than 10 seconds for 90% of the measured signal, and its excellent linearity. It is suitable for monitoring concentrations of common hydrides such as phosphine, arsine, diborane, and silane in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH $_3$. To be sure, please check if gas mixtures are present.

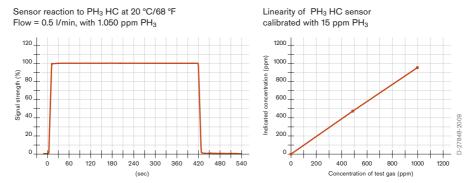
RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display
			in ppm PH ₃
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 2 (-)
Ethanol	C₂H₅OH	250 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 0.3
Hydrogen chloride	HCI	20 ppm	≤ 1
Hydrogen cyanide	HCN	60 ppm	≤ 5
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 1

(-) Indicates negative deviation

DrägerSensor® XXS PH₃ HC

Order no. 68 12 020


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no
Dräger X-am 8000	no	yes	1 year	> 3 years	no

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation.

Detection limit:	2 ppm	
Resolution:	1 ppm	
Measurement range:	0 to 2,000 ppm PH ₃ (phosphine)	
Response time:	≤ 10 seconds (t ₉₀)	
Precision		
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 2 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	No effect	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.05% of measured value/% RH	
Test gas:	approx. 4 to 1,800 ppm PH ₃	

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH $_3$. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	50 ppm	No effect
Arsine	AsH ₃	5 ppm	≤ 5
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Diborane	B ₂ H ₆	5 ppm	≤ 3
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	60 ppm	≤ 5
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect
Silane	SiH ₄	5 ppm	≤ 5

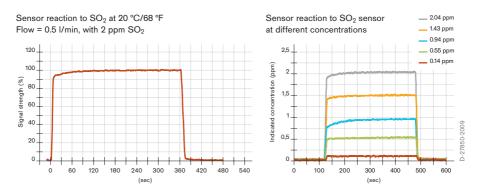
DrägerSensor® XXS SO₂

Order no. 68 10 885

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 6000/	no	yes	2 years	> 3 years
6500				
Dräger X-am 2500	no	yes	2 years	> 3 years
Dräger X-am 2800	no	yes	2 years	> 3 years
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years
Dräger X-am	no	yes	2 years	> 3 years
3500/8000				

KX (68 11 344) - optional and exchangeable

Cross sensitivities to hydrogen sulfide (H₂S) are eliminated.


The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. Due to the change of sensitivity, a calibration is necessary after installation. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Food industry, pest control, mining, oil and gas, petrochemical, paper manufacture, shipping, steel industry.

Detection limit:	0.1 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)		
Response time:	≤ 15 seconds (t ₉₀)		
Precision			
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 2 to 90 ppm SO ₂		

As well as a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The KX selective filter (order no. 68 11 344) is an accessory for the DrägerSensor® XXS EC SO_2 and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 1,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm, it can be used for 1,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂ without selective filter
Acetylene	C ₂ H ₂	100 ppm	≤ 140
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂ 1.5 Vol%		No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 5 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI 20 ppm		≤ 5
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 60
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH4	1 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 30 (-)
Nitrogen monoxide	e NO 20 ppm No effect		No effect
Ozone	O ₃ 0.5 ppm No effe		No effect
Phosphine	PH ₃	1 ppm	≤ 6

⁽⁻⁾ Indicates negative deviation

5.7 Explanatory notes – sensor data

DRÄGERSENSOR

Name and type of the sensor as well as the order number

Used as follows:	Indicates the devices suitable for use with this sensor
Plug & Play:	Indicates whether this sensor has plug & play functionality
Replaceable:	Indicates whether the sensor in the device can be replaced
Guaranty:	Indicates the Manufacturer's guaranty period for the sensor

Limited manufacturer guarantee

Dräger grants a limited manufacturer guarantee for products in this handbook within the specified guarantee period under the following conditions. Dräger guarantees to the End Customer a product life time for the guarantee period indicated in this handbook, beginning with the first use of the product, but not longer than the guarantee period indicated plus one year after manufacture of the product. End Customer is the person or legal entity that acquired the new and unused product for its own use and not for resale.

Dräger's obligations and End Customer's sole and exclusive remedy under the Limited Manufacturer Guarantee is limited to the replacement of the defective product with a new product. For any valid claim hereunder (as determined by Dräger in its sole discretion), Dräger will replace the product free of charge with a new unit of the same type and properties.

The End Customer must provide written notice of any claim under the Limited Manufacturer Guarantee within thirty (30) days of when the claim becomes known or should have been known and in any event within the stated guarantee period. Such notice must be provided to either Dräger or the dealer where he acquired the product.

The Limited Manufacturer Guarantee is valid only if the End Customer (i) performed all maintenance measures recommended by the manufacturer (in the published Product Specifications or instructions for use) or required by applicable law and (ii) did not use the product in any manner which is outside its intended use as provided in the Product Specifications or instructions for use. This Limited Manufacturer Guarantee excludes any damage caused to the product (a) due to any act or omission of End Customer or any other third party, or (b) caused by transport, installation, modifications to, or improper use of the product.

DRÄGER MAKES NO GUARANTEE FOR THE PRODUCT OTHER THAN THE ONE SET FORTH HEREIN OR THAT WHICH MAY BE PROVIDED IN A SEPARATE WARRANTY OR GUARANTEE COVERING THE PRODUCT. THIS GUARANTEE DOES NOT LIMIT ANY STATUTORY OR OTHER MANDATORY RIGHTS THE END CUSTOMER MAY BE ENTITLED TO.

The Limited Manufacturer Guarantee and its enforcement are subject to German substantive law to the exclusion of the UN Convention on the International Sale of Goods (CISG) and the conflict of laws rules. Place of performance is Lübeck, Germany. The courts of Lübeck, Germany shall have exclusive jurisdiction.

Expected sensor life:	Indicates the typical lifespan of a sensor under normal operation condi-	
	tions at 20°C (68°F), 50 %r.h., 1013 hPa. This applies for the operation	
	of the sensor (the date from which the sensor is plugged into the inst-	
	rument - note the use by date on the outer packaging). The values are	
	based on laboratory and field experience and may deviate in individual	
	cases. The decisive factor is the adjustment capability of the sensor. If	
	it is not possible any more to adjust a sensor it must be replaced.	
Selective filter:	Indicates whether this sensor has a selective filter, which could be	
	a replaceable one. The filters eliminate the cross sensitivities of the	

indicated gases. Each filter has a specified service life calculated based

MARKET SEGMENTS

A list of typical market segments in which this sensor is used. This list does not claim to be complete.

on exposed ppm and duration.

TECHNICAL DATA

Indicates the technical data for this sensor.

SPECIAL FEATURES

Description of the features that characterize this sensor and thus make it particularly interesting for various applications.

RELEVANT CROSS-SENSITIVITIES

Selection of gases, which may affect the sensor in typical applications. The effect of the filter is depicted in a separate column for sensors with selective filter.

TECHNICAL DATA

TECHNICAL DATA	
Detection limit	Specifies the smallest non-zero concentration at which a sensor gives a signal,
(Limit of Detection - LOD):	and which is shown in the display. Example electrochemical sensor: With a
	detection limit of 2 ppm, 2 ppm is therefore visible in the display as the first
	concentration. Concentrations below 2 ppm are depicted as 0 ppm. Typically,
	the limit of detection of the sensors also corresponds to the limit of quantifica-
	tion. For selected sensors, the measuring range (incl. limit of quantification)
	is specified by a type examination certificate based on national/international/
	European standards through an examination by an approval body in the respec-
	tive Notes on Approval of the Dräger gas detection devices.
Limit of quantification (LOQ):	Specification for X-pid: In analytics, a distinction is made between the limit of
	detection and the limit of determination. The detection limit is the lowest mea-
	sured value at which the presence of a substance is qualitatively detected. The
	limit of quantification is the smallest concentration of an analyte that can be
	determined quantitatively with a specified accuracy. The limit of quantification
	always has at least an equivalent or higher specification than the detection limit
	of the identical sensor.
Resolution:	Indicates the concentration increments of the display. For example: With a
	detection limit of 2 ppm and a resolution of 1 ppm, the concentrations are
	depicted in the following increments: 2 ppm/3 ppm/4 ppm
Upper range:	Specification for X-pid: Concentration up to which a substance can be mea-
	sured, i.e. the sensor (PID) gives a signal, that is within the specification of
	the measuring device. The upper limit varies and depends on the substance.
	Indicates the maximum measuring ranges of the sensor. All gase vapors with
Measurement Range:	their ranges are indicated if a sensor can be used for different gases and vapors.
Relative Precision:	
Relative Precision:	Some sensors are suitable for the measurement of different target gases. The
	various cross sensitivities of these target gases are in general stated in the sensor
	information under the item measurment range. The sensitivity factor refers to a
	defined gas and is called relative sensitivity. With these sensitivity factors interfe-
	rences (cross sensitivities) or calibration factors can be calculated.
	Example XXS OV: The defined gas for an XXS OV sensor is ethylene oxide
	(EO). The relative sensitivity of carbon monoxide (CO) related to EO is 0.4.
	Meaning, an XXS OV sensor calibrated to EO will give a reading of 40 ppm
	when exposed to 100 ppm CO.
	The given values are guiding values and apply to new sensors. Gas mixtures
	may be displayed as the sum. Therefore, it should be examined whether gas
	mixtures are present. Gases with a negative sensitivity may offset the positive
	display of the calibration gas.
Response time:	Typically, the times listed here are T ₅₀ or T ₉₀ at 20°C (68°F), 50% r.h., 1013
response time.	mbar. These times indicate when 50 % or 90 % of the final signal has been
	reached. Typical values measured for the metrological report with a gas war-
	ning device can be found in the respective Notes on Approval supplied with
	each device.
Precision (repeatability):	Criterium for the repeatability of measurement results under the same conditions
	(1-sigma at 20 °C, 50 %RH). If a precision of, for example, ≤ ± 3 ppm of the mea-
	sured value is specified, the following statement is applicable for 1-sigma: At a
	concentration of 100 ppm, the displayed value can be between 97 and 103 ppm.
Linearity error:	In measurement technology, a linearity error is a deviation of the actual charac-
	teristic curve from the nominal characteristic curve, which is a straight line or, if
	necessary, is approximated as such. The displayed measured value (actual cha-
	racteristic curve) is ideally linearly dependent on the measurement parameter
	(gas concentration = nominal characteristic curve). Deviations from this linear
	relationship that occur in reality are referred to as linearity errors. The linearity
	error is greater the more the gas concentration to be measured deviates from
	the calibration gas concentration used. Example: With a linearity error of ± 5
	%LEL, values between 95 %LEL and 105 %LEL can be displayed for a gas

concentration of 100 %LEL to be measured.

Long-term drift:

This information indicates the typical drift of the sensor in the zero point and in the sensitivity across a longer period. This data may refer to a month or a year. The long-term drift data of $\leq \pm~0.2$ ppm year at 20° C (68°F) states that this sensor drifts max. $\leq \pm 2$ ppm per year. A value for the long-term drift of the sensitivity of $\leq \pm~2$ ppm/month, indicates that after two months with a display of 100 ppm, the gas concentration may be between 96 and 104 ppm at maximum.

Warm-up time:

The warm-up time indicates the amount of time needed before a newly installed sensor or a sensor, which was without electricity for a period of time and then is powered up again, can be calibrated. However, the sensor may be ready for use after only a few minutes. In this case, there may be a higher rate of measurement errors.

Ambient conditions:

Indicates the temperature, humidity and pressure range in which the sensor may be used. The indicated corrections do not apply with mesurements outside of the permissible ambient conditions. Measurements outside of the specified range do not fall within the intended use and are therefore not part of the manufacturer's guarantee. However, if a sensor was short-term operated outside of the humidity specification, subsequent storage in a humidity range of 40 to 60% RH is recommended for at least double the time.

Influence of temperature:

The effect of temperature must be considered when the measurement temperature deviates from the temperature during the calibration.

Example 1: Temperature effect on the sensitivity amounts to $\leq \pm 5$ % of the measured value. This means that the max. deviation across the entire temperature range of the sensor (typically - 40 to 50° C or - 40 to 122° F) is expected to be $\leq \pm 5$ %. At an ambient temperature of, for example, - 10° C (14° F) and a displayed value of 100 ppm, the gas concentration may be between 95 and 105 ppm at maximum. The temperature difference between the temperature of the measurement and the temperature of the calibration must be taken into account with some sensors.

Example 2: The effect of temperature on the sensitivity is $\leq \pm 0.5$ % of the measured value/K. The sensor was calibrated at 25° C (77° F), the measurement is taken at an ambient temperature of 35° C (95° F). The temperature difference is then 10° C (14° F) or 10 K. This yields the following calculation: $10 \times 0.5\% = 5\%$ With an ambient temperature of 35° C (95° F) and a displayed value of 100 ppm, the gas concentration is between 95 and 105 ppm at maximum.

Influence of humidity:

The effects of humidity must be considered if the humidity during measurement deviates from the calibration humidity.

Example 1: The effect of humidity on the sensitivity is $\leq \pm 0.5$ % of the measured value. This means, that a deviation of maximum $\leq \pm 5$ % over the entire humidity operating range (typically (10 to 90)% RH) must be taken into account. With an ambient humidity of 50 %, for example, and a displayed value of 100 ppm, the gas concentration may be between 95 and 105 ppm at maximum. The humidity difference between the humidity of the measurement and the humidity of the calibration must be taken into account with some sensors.

Example 2: The effect of humidity on the sensitivity is $\leq \pm 0.02$ % of the measured value/% rel. humidity. The sensor was calibrated at 0% rel. humidity, the measurement is taken at an ambient rel. humidity of 50 %. The difference of the rel. humidity is then 50 %. This yields the following calculation: 50×0.02 % = 1 % With an ambient humidity of 50 % and a displayed value of 100 ppm, the gas concentration is between 99 and 101 ppm at maximum.

Test gas:

Recommended test gas concentration for calibrating the sensor. Commercially available test gas in cylinders is dry. If the instrument is subsequently used in practice at ambient conditions of e.g. 20 °C and 50 %RH, this may have an effect on the zero point and the measurement result, depending on the sensor type (for example with the PID sensor). In addition it is recommended to use an adjustment concentration in the range of the alarm thresholds to be monitored.

6 Accessories

6.1 Introduction

Dräger offers a range of accessories to ensure that you can make optimal use of your gas detector for your specific application. We also help you maintain your device and make sure that it is kept ready for operation.

Safety

Measuring devices that are not operating correctly do not provide protection and can lead to accidents. Testing these devices (bump test) is the only way to guarantee reliable and correct measurement of and warning against gas hazards.

Enhanced functionality

Using the correct accessories can enhance the functionality of gas detectors. For example, a personal detection device can be converted into a leak detection or clearance measurement device in confined spaces by using an external pump, probe or an extension hose. It is important that you choose the accessory that is best suited for your application.

Configuration/Documentation/Archiving

Setting the parameters of the gas detectors always becomes important when limit values change or if the gas detector is used for another application. This is where we provide after-sales support: and the PC software helps you with the configuration. The documentation is also extremely important: Who performed which test and what was the result? Where have the calibration certificates been filed?

Our solutions also provide support in this area.

Evaluation

A data logger collects numerous measured values and results – but the data remains idle until it is evaluated. That's why we help you prepare the data: this includes graphic displays and easy navigation in the data logger – as well as automatic reports, e.g. if an alarm is triggered or a calibration interval is exceeded.

Solutions to make sure that you always stay on top of your process.

6.2 Adjustment or calibration?

The terms "calibration" and "adjustment" are often used synonymously. However, there are important differences between the two terms. The term "calibration" is often used although technically an "adjustment" is meant - namely a test with subsequent correction. In this section, however, the technically correct term is used, even if in practice both terms are mostly used synonymously.

Adjustment

During an adjustment, the displayed value, the so-called actual value, is corrected to the correct value, the so-called nominal value (e.g. the test gas concentration) as closely as possible with the constraints of the display. The aim is to obtain more accurate displayed measurements. This applies to both the zero point and the sensitivity of the sensor. Depending on the sensor, either a zero gas (e.g. synthetic air or nitrogen) or fresh air is used to adjust the zero point, while the appropriate test gas is required for the sensitivity adjustment.

Target gas adjustment or surrogate? gas adjustment (cross calibration)?

In a target gas adjustment, the gas detector is adjusted with the gas that it will be measuring. This type of adjustment is the most accurate and is therefore recommended by Dräger where ever possible.

With some sensors, however, a target gas adjustment is not possible or only possible to a limited extent. Some substances may require extensive expertise and a careful approach to avoid mistakes during adjustments. Sometimes several (combustible) substances are to be measured in one application, to which the sensor reacts at different sensitivities. In such cases, a surrogate gas adjustment is recommended. Thus, a surrogate test gas is a gas mixture used to replace a test gas that is difficult to handle.

Reasons for a surrogate gas adjustment can be among others:

- Target gas is hazardous or critical to the health of the tester:

 Example: The standard test gas for the OV sensors is ethylene oxide. This gas is toxic and carcinogenic. Therefore, the OV sensors can be adjusted with the substitute gas carbon monoxide (CO). This is less dangerous and easier to handle.
- The sensor detects several different gases: A PID sensor can detect all substances ionized by the UV lamp in the sensor. For simplicity, the sensor is typically adjusted with isobutylene. The relative sensitivity of other substances is then expressed using so-called response factors, which must then be considered for the measured value display. This conversion takes place automatically in Dräger gas detectors.
- Purposely selecting a more sensitive setting for a measurement with increased safety:

- A CatEx sensor is less sensitive to nonane. If the CatEx sensor is set to nonane, all the other gases such as methane or propane are displayed with increased sensitivity. This provides increased safety during the measurement.
- If different combustible gases are measured with a CatEx sensor, including methane, then it is recommended to perform an adjustment and function bump test with methane in order to compensate the effect of a selective methane insensitivity by this sensor technology. Also, in this application, the conversion between the gases is automatically done in Dräger instruments. General note: In principle, a deviation of up to ± 30% of the measured value must be considered for the displayed concentration when performing a surrogate gas adjustment.

Calibration

During calibration, **a gas detector is checked** and the deviation (incl. measurement tolerances) from a reference gas (e.g. the test gas concentration) is determined and logged. Actions beyond logging do **not** take place during a calibration. The aim of the calibration is a protocol, the so-called calibration certificate. Under no circumstances **may** changes be made to the device after a calibration, as otherwise the calibration (= protocol/documentation) is then void.

Every gas detector is subject to changes due to wear, contamination or environmental influences (temperature, humidity, pressure, ...). Consequently, measured values can change and should be checked regularly. The recommended daily function test with a suitable test gas (also called bump test) fulfills this requirement.

6.3 The bump test

Anyone looking for a definition of the bump test will struggle to find a clear and straightforward explanation. This important test is performed in a variety of different ways in practice. When designing the test system you need to ask: what significance do "I" expect from the bump test?

- a) Does the device need to show that it works in principle and that "gas" is reaching the sensors to be checked (qualitative finding)?
- b) Or do I need a quantitative finding, i.e. whether the device is still providing measurements that are "accurate enough"?

Dräger provides two different categories of the bump test:

The quick bump test

The quick bump test checks whether the relevant sensor exceeds the first alarm threshold after applying an "appropriate" test gas. Additional safety measures are available (e.g. the sensor may need to be above the alarm threshold for a certain amount of time) but, in principle, the test threshold is the alarm threshold configured in the device.

A test gas is "appropriate" if it is not "too far" above the first alarm threshold, as this would otherwise mean that the gas test would only fail after a dramatic loss of sensitivity. A limit must also be maintained in the event of a more qualitative test. Dräger provides recommended limits for these tests.

The extended bump test

The advanced bump test checks whether the tested sensor complies with the test gas concentration within a tolerance window after an "appropriate" test gas is applied. This test includes a quantitative finding and increases safety.

The sensor also has an impact on whether the test gas is "appropriate". A test close to the alarm thresholds is often advisable, but many sensors are also linear so that the permitted range is much larger than for the quick test, as the "test threshold" is always adjusted. This allows the accuracy to be determined at almost any point within the measuring range. However, the selection of a range that corresponds to the measuring task is advisable. Dräger also provides recommended ranges for the permitted test gas concentrations.

The CC-Vision software lists the permitted calibration ranges for every individual sensor (and every selected test gas) for both the quick and the extended bump test. In many cases the gas detector – or even the Dräger X-dock – does not accept concentrations outside this range.

The following table helps you select the appropriate bump test for you:

Test duration	••	
Gas consumption	••	•
Behaviour for "special gases" (high adsorption)	•	•
Check for accuracy / residual sensitivity	•	••
Behaviour when applying the incorrect gas (e.g. incorrect	•	••
concentration set or undefined cross-sensitivity, as the incorrect		
test gas cylinder is connected; residual gas in the hose, etc.)		
Permitted test gas concentration range	•	••
(minimum and maximum accepted concentration)		
Testing below A1 possible		

6.4 Devices for calibration and functional testing

Portable gas detectors are used for continuous measurement and support you in every application. As a result, it is important to check the devices for operational readiness by applying test gas and evaluating the result. This not only ensures that the sensors themselves are ready for measurement, but that the access to the sensor is not blocked by dust or dirt. An calibration should also take place at regular intervals, as factors such as environmental influences or ageing can have an impact on the sensor sensitivity.

National guidelines also prescribe bump tests and calibrations, such as information sheet T021 (gas warning devices for toxic gases/vapours) or T023 (gas warning devices for explosion protection) by the "Rohstoffe und chemische Industrie" (raw materials and chemicals industry) liability insurance association (BG RCI) in Germany. The applicable standard for the member states of the European Union, EN 60079-29-2 "Gas detectors — Selection, installation, use and maintenance of detectors for flammable gases and oxygen", also prescribes the implementation of a sensitivity test directly prior to use (international: IEC 60079-29-2).

6.5 Manual bump test

The simplest and most cost-effective option for testing the function of a portable gas detector is to perform a manual bump test with test gas. This only requires an appropriate test gas cylinder, a corresponding pressure reducer and a calibration adapter for the specific device. Briefly applying the test gas to the sensors triggers the instrument alarm. Make sure that an adequate test gas concentration is applied! Depending on the type of device, it can be calibrated – in the same arrangement – using the device software or a PC with the Dräger CC-Vision software. This software allows the user to configure and calibrate the devices in line with their individual requirements.

6.6 The Dräger Bump Test Station

The Dräger Bump Test Station facilitates the performance of an every-day bump test, as the test is evaluated by the devices themselves and the test gas is automatically applied on insertion. In addition, most devices are able to automatically identify the station and switch to bump test mode without having to perform any manual activities.

Dräger devices Dräger Pac family, Dräger X-am 2500, 5000 and 5600 as well as the X-am 7000 are supported. The Dräger Bump Test Station does not require a power supply – the evaluation itself is performed by the gas detector. The documentation also takes place in the gas detector, within the data logger. The device must be configured for the type of bump test and the required test gas concentration.

The sensors' rapid response time ensures a quick test in under 12 seconds in some cases. The lower gas consumption and time saving reduce the operating costs.

DBR-2017

6.7 Dräger X-dock - more than just a test station

The Dräger X-dock automatic test and calibration station is the modular solution for the daily bump test as well as a workshop and fleet management solution.

The X-dock can be operated independently as an individual station - a PC is <u>not</u> required. This gives you the benefit of a range of options at every location: the X-dock can perform quick or advanced bump tests or even perform calibrations, readout the data logger and check the gas detector's alarm elements or the sensors' response times. These individual test steps can be configured - and the three most important objectives are always ensured:

1. Ease of use:

The simplest test: insert and close the lid – the rest takes place automatically.

2. Short test time:

An advanced pneumatics system provides extremely short test times.

3. Low gas consumption:

The short test time as well as the gas flow, which has been reduced to 300ml/min, reduces the gas consumption significantly, which also helps to reduce costs. In addition, the X-dock immediately switches off valves once a test gas is no longer required for a certain test step and the device has completed the test.

This system combines ease of use with low operating costs – but with full documentation. Everything that the X-dock performs is stored in the internal database. If the station is used as an individual station, the results can be exported as a PDF or printed on any conventional postscript-enabled printer.

This means that the system is scalable: whether you use one or ten modules on a master is up to you.

The Dräger X-dock independently detects the test gases that are required. The touchscreen can be used to program the connected gas cylinders – the X-dock station performs everything else automatically. Up to six test gas cylinders can be connected to a master and these test gases can themselves consist of gas mixtures. This covers almost every application.

However, the highlight is a possible expansion: X-dock stations can be connected to a network. The data is synchronised and stored on a server.

The X-dock Manager PC software makes data evaluation as easy as pie:

Which calibrations are coming up or are even overdue? Has a device not been checked? Has an alarm been triggered in operation and when are the X-dock stations engaged? Questions that the X-dock Manager conveniently answers.

If you still need more, the X-dock also provides a range of special functions for your application: for example, the X-dock can be used as a charging station for X-am 125 devices – this function is ideally supplemented by the test planner function, which performs the set test on a predetermined schedule (e.g. daily).

Take the time to find out what the Dräger X-dock can do for you!

Geräte	Dräger Bump Test Station	Dräger X-dock Station	Basic test with gas	Dräger CC-Vision software
Dräger Pac family				
Dräger X-am 2500/5000/5600				
Dräger X-am 2800				•
Dräger X-am 5100				
Dräger X-am 7000	•	•		•
Dräger X-am 3500/8000				

6.8 Test gases and accessories

Test gases are an essential part of the bump test. Only an **appropriate** test gas can verify a gas detector's functionality and it is just as important for calibration. For this reason, Dräger recommends using test gases from Dräger for the adjustment and function test of Dräger products.

A high standard of quality is required as test gases are a key element of the safety chain. Dräger test gases are produced pursuant to ISO 9001 and guarantee a globally valid quality standard. Single as well as mixed gases are available.

Once the test gas cylinders are completely empty they can be transported to a scrap metal facility and disposed of in an environmentally friendly manner, which means that customers do not have to pay any rental or transport costs.

Do not inhale the test gas. Risk to health!

Observe the hazard information given in the relevant safety data sheets. Make sure that the gas can be vented through an outlet or outside the building into the atmosphere.

7000 0040

6.9 Pressure reducer

The history of Dräger started with a patent for a pressure reducer – and every system that needs a test gas cylinder also needs a pressure reducer. The cylinders contain compressed gas. The pressure now needs to be reduced for the application (e.g. the bump test) – this requires a pressure reducer.

Some pressure reducers reduce the pressure to a set level (e.g. 0.5 bar). The flow rate is then determined by the line resistances or any flow control valves.

There are also pressure reducers that regulate a fixed volume flow – e.g. 0.5 l/min. In this case, the pressure is adapted according to the resistance in order to ensure a constant volume flow.

The correct pressure reducer for the system needs to be selected. Pressure reducers can naturally also be reused. They have a screw thread and can be used for various test gas cylinders. Only pressure reducers made of stainless steel should be used for reactive gases. In addition, the pressure reducer should be used for the same reactive gas if possible. Switching between different reactive gases can affect the stability of the gas.

7-480 9-2005

Trigger control valve

APPLICATION

For the quick functional test before devices are used

Manually pressing the trigger briefly applies test gas to the gas detector's sensors. Raising the trigger fixes the control valve in the open position and provides a continuous gas flow of 0.5 l/min.

Control valve basic

For devices without an internal pump

Standard pressure reducer with thumbwheel to manually open and close the gas outlet. Volume flow: 0.5 l/min.

On-demand control valve

For devices with an internal pump

The pump's suction automatically opens the valve and can be used with devices with internal pumps. Volume flow: 0.5 l/min.

APPLICATION

D-27716-2017

Variflow regulator

Regulator with adjustable volume flow

Can be set to a number of fixed flow specific settings between 0 - 5 I/min (0 I/min; 0.5 I/min; 0.75 I/min; 1.0 I/min; 1.5 I/min; 2.0 I/min up to 5 I/min).

Regulator basic, stainless steel

Special stainless steel valve for aggressive gases

This stainless steel valve is ideal for reactive gases, such as chlorine or ammonia. It is recommended to use a regulator for each single gas type. The valve is opened and closed using a thumbwheel.

Fixed pressure control

Constant pressure control valve for Dräger X-dock

With a pre-set pressure of 0.5 bar, specifically designed for the use with the Dräger X-dock Station. Available as a nickel-plated version or in stainless steel for reactive gases, such as chlorine or ammonia. It is recommended to use one regulator for each single gas type.

Fixed pressure control valve

Constant pressure control valve with flowstop for Dräger X-dock

With a pre-set pressure of 0.5 bar, specifically designed for the use with the Dräger X-dock Station. The installed flowstop prevents gas from accidentally escaping from the cylinder.

6.10 Pumps

Dräger X-am 8000 with pump adapter

In certain situations confined spaces and areas need to be checked and cleared before they can be accessed. In this case, the ambient air from the room needs to be fed into the measuring device while ensuring that the person using the device does not have to access the space. Pumps equipped with a hose and probe are ideal for performing a measurement from a safe distance.

A pump is also required for leak detection, in order to connect the corresponding probe to the gas detector.

The Dräger X-am 3500/8000 can be equipped with an integrated high-performance pump.

Dräger X-am Pump

In both cases, a corresponding adapter ensures that the device can be used as either a diffusion unit or a pump unit. You can use the device in diffusion mode (pump-free), even if you decide on an internal pump.

The external Dräger X-am Pump is available for the Dräger X-am PAM (please contact Dräger for availability of the pump for the X-am 2800) product family. When the detector is inserted the pumping function starts automatically. The period of pump

operation, flow test and the measurement results are stored in the X-am's data logger. Like the X-am instrument family, the X-am Pump is approved for Ex Zone 0. The pump can be used with hoses up to 45 m (148 ft.) and is optimized for a hose diameter of 3 mm for short purging times. Via a Micro USB socket the pump's battery pack can be charged with the charging cable of any mobile phone.

6.11 Probes

Pump-supporting measurements without probes are almost unimaginable as various tasks need to be fulfilled depending on the application.

Is selective suction required or does it need to be within a certain area? Is a rigid connection adequate or does the probe need to have a flexible neck? Is a telescopic probe required? How big is the opening available for the measurement?

We have the right probe in all of these cases.

FOR USE WITH

* Please contact Dräger for availability of the pump for the X-am 2800

ORDER- NUMBER	NAME		LENGHT	LENGHT MATERIAL	GAS DETECTION DEVICES	USES
	Telescopic probe ES 150	8002.7664-172	1,5 m 4.9 ft.	Stainless-steel probe with an integrated FKM hose. External diameter of 12 mm (0.5 in.). Tested for gases of the group IIC in the areas Zone 0 and Zone 1, test report BVS PB 18/13 (DEKRA/Exam).	X-am 7000 X-am 2500 X-am 2800* X-am 5000/5600 X-am 3500/8000 X-pid	Extendable to lengths of up to 1.5 m (4.9 ft.). Suitable for areas where there is a risk of explosion; solvent-resistant.
64 08 239	Measuremen probe	D-25392-2009	1,5 m 4.9 ft.	Aluminum probe with with an integrated PVC hose. External diameter of 10 mm (0.4 in.).	X-am 7000 X-am 2500 X-am 2800* X-am 5000/5600 X-am 3500/8000	With its fixed length, this probe can be used for any applications involving distances of 1.5 m (4.9 ft.). The tip of the probe is perforated for the last 15 cm (0.5 ft), enabling sampling in media such as grain sacks and dry bulk solids. Für Messungen in Abwasser- und Kanalisationsbreichen, Lösemittelbeständig.
	Float probe incl. hose	D-10391-2009	5 m 6.6 ft.	Probe: Polycarbonate. FKM hose with external diameter of 8 mm (0.3 in.) + water and dust filter.	X-am 7000 X-am 2500 X-am 2800* X-am 5000/5600 X-am 3500/8000**	For measurements in drainage and sewage systems. Solvent-resistant.
68 07 097	Float probe incl. hose	D-10391-3009	10 m 32.8ft	Probe: Polycarbonate. Tube: CR-NR [polychloroprene (CR) with natural rubber (NR)] with an external diameter of 9 mm (0.35 in.).	X-am 7000 X-am 2500 X-am 2800* X-am 5000/5600 X-am 3500/8000**	Electrically conductive.

FOR USE WITH

 $^{^{\}star}$ Please contact Dräger for availability of the pump for the X-am 2800 ** Probe not suitable for applications with PID sensors.

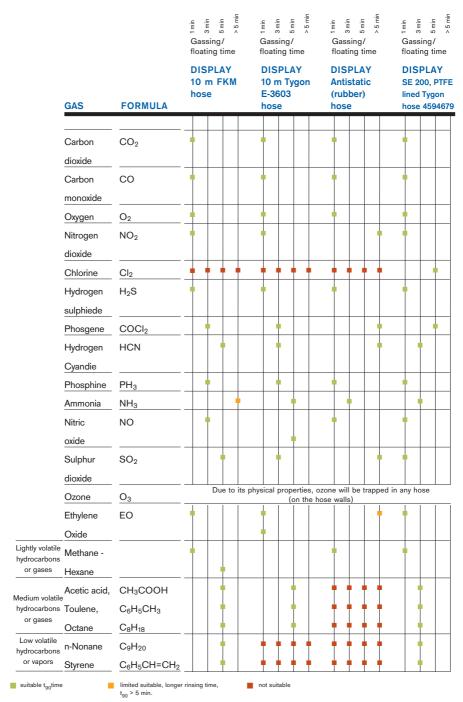
6.12 Hoses

An extension hose, together with pumps, is always required if the air quality has to be assessed from distant measuring points, such as at the base of a silo, a cargo chamber on a ship, or a sewer. Two points must be considered: the hose length and the hose material. The pumping capacity is critical when determining the length of the hose. The pumping capacity of the Dräger X-am 3500/8000, X-zone 5500/5800 and X-am Pump is designed for 45 m.

The adsorption behaviour of the gases to be measured on the surface of the hose must be considered when selecting the hose material.

Three different hose materials have proven themselves in practice and are suitable for certain gas families. The following table will help you choose the hose that is right for you.

6.13 Usage of Hoses

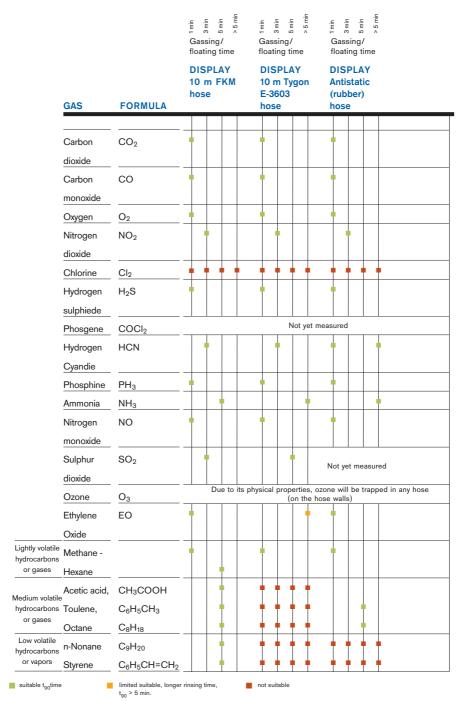

HOSES WITH 5 MM INNER DIAMETER FOR THE USE WITH INSTRUMENTS:

Dräger X-am 2500, 5000 and 5600 with the Dräger X-am 1/2/5000 external pump (p/n 83 19 400)

PROPERTIES

	Fluororubber 1203150	Tygon 8320766 E-3603	Rubber 1180681	Tygon with internal PTFE coating 4594679
Material	FKM	PVC	CR-NR DWN 2715	PVC with PTFE
Chemical	Fluorinated rubber	Polyvinyl chloride	Polychloroprene	Tygon shell and
name			(CR) with natural	interior polyte-
			rubber (NR)	trafluoroethylene
				(PTFE) coating
Inner Ø	5 mm	5 mm	5 mm	5 mm
Outer Ø	8 mm	8 mm	9 mm	8 mm
Hardness	75 Shore A	56 Shore A	60 Shore A	
Colour	Black	Transparent	Black	Transparent
Benefit	Suitable for vapours	Phthalate-free (plasticizer)	Conducts electricity	Specifically for aggressive gases such as chlorine
Temperature	-15 °C to + 200 °C	-46°C to + 74 °C	-30°C to +134°C	-36°C to 74°C
range				
Antistatic	no	no	yes	no
Use in explosion-	Suitable	Suitable	Suitable	Suitable
hazard area				
Further features	solvent resistant	flexible, no kinking		

TEST RESULTS AND MEASUREMENT RECOMMENDATIONS


HOSES WITH 3 MM INNER DIAMETER FOR THE USE WITH THE INSTRUMENTS:

Dräger X-am 3500/8000, Dräger X-am 2800 or Dräger X-am 2500, 5000 and 5600 with Dräger X-am Pump (p/n 83 27 100)

PROPERTIES

	Fluorinated rubber 8325837	Tygon E-3603 8325838	Rubber 8325839
Material	FKM	PVC	CR-NR
Chemical name	Fluorinated rubber	Polyvinyl chloride	Chloroprene rubber / Natural rubber
Inner Ø	3.2 mm	3.2 mm	3.2 mm
Outer Ø	6.4 mm	6.4 mm	6.4 mm
Hardness		56 Shore A	60 Shore A
Colour	Black	Transparent	Black
Benefit	Suitable for	Phthalate-free	Conducts
	vapours	(plasticizer)	electricity
Temperature	-15 °C to + 200 °C	-55 °C to 74 °C	-30°C to 134°C
range			
Antistatic	No	No	Yes
Use in explosi-	Suitable	Suitable	Suitable
on-hazard area			
Further features	Solvent resistant	Flexible, no kinking	

TEST RESULTS AND MEASUREMENT RECOMMENDATIONS

Concluding remark

This chapter only covers part of the extensive accessories available. In addition to pump, calibration and communication accessories, a large range of pockets and cases (with or without equipment) and various power packs complement the group of accessories that can be adapted to the relevant application. The services, such as maintenance contracts, full service maintenance contracts and the all-inclusive worry-free package or training, such as service technician training, round out the gas detector technology area. Our branch employees are more than happy to provide advice on these products and services.

3-6 | CR | LE | Subject to modifications | @ 2022 Drägerwerk AG & Co. KGaA

Not all products, features, or services are for sale in all countries.

Mentioned Trademarks are only registered in certain countries and not necessarily in the country in which this material is released. Go to www.draeger.com/trademarks to find the current status.

CORPORATE HEADQUARTERS Drägerwerk AG & Co. KGaA Moislinger Allee 53–55 23558 Lübeck, Germany

www.draeger.com

Locate your Regional Sales Representative at: www.draeger.com/contact

